

C -

\mathbf{A}

- ff

fi P Crassostrea gigas

, J - C -X , Q L , ,*, H - Y , S L, LK - .

Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

ARTICLE INFO

Keywords:

P fi -

Crassostrea gigas

Ι.

S.

ABSTRACT

T, P fi -(Crassostrea gigas) fi . R ff - . R - . T, fi. P fi -

1. Introduction

fi (Crassostrea gigas) (N , 2001). I K -**(K** ., 2013). 0 P fi

- (B ., 2004; ., 2009; Н E ., 2006; W ., 2017; X 2017). H - , . A ff \mathbf{fl} ., 2015). N -

(B ., 2004; T , 1961). H fi. ., 2014; ., 2006). U В -QTL

2019; A 24 J 2019

Available online 26 June 2019

0044-8486/ $\mbox{@}$ 2019 Elsevier B.V. All rights reserved.

C - - : K L - - - M (O E-mail address: 66@ - (Q. L). U, - C.), M - E , Q - 266003, C .

C. Xu, et al. Aquaculture 512 (2019) 734249

fi fi fi 7. RNA (RNA), F (2018)

Constant of the final control of the fi

2. Material and methods

2.1. Parental source

2.2. Mating design and rearing

Fig. 1. R - C. gigas. B=B ; W=W .

2.3. Shell pigmentation record and statistical analysis

- 0, , ;

- 3,

3. Results

T (1–2, 7–12, 14, 18, 20–22, 26–27, 30, 33, 35)

C. Xu, et al. Aquaculture 512 (2019) 734249

F	P			P .	Pff						
	F		M		4	3	2	1	0	Т -	
1	W♀1	0	B♂1	4	0	26	22	40	0	88	
2	W♀2	0	B0'1	4	0	60	45	113	0	218	
3	W♀3	0	B♂2	4	0	18	11	28	53	110	
4	W♀4	1	B♂2	4	0	48	50	60	43	201	
5	W♀5	0	B♂3	4	0	11	11	43	67	132	
6	W♀6	0	B♂3	4	-						
7	W ♀ 7	0	B♂4	4	0	49	15	65	0	129	
8	W♀8	0	B♂4	4	0	46	36	88	0	170	
9	W♀9	0	B♂5	4	0	13	17	147	0	177	
10	W♀10	0	B♂5	4	0	61	21	113	0	195	
11	W♀11	0	B♂6	4	0	49	48	77	0	174	
12	W♀12	0	B♂6	4	0	81	79	79	0	239	
13	B♀13	4	B♂7	4	81	0	0	0	0	81	
14	W♀13	0	B♂7	4	0	32	13	51	0	96	
15	B♀14	4	B0'8	4	99	0	0	0	0	99	
16	W ♀ 14	0	B♂8	4	-						
17	B♀15	4	B♂9	4	112	0	0	0	0	112	
18	W♀15	1	B♂9	4	0	45	21	52	0	118	
19	B♀1	4	W♂1	0	-						
20	B♀2	4	W♂1	0	43	33	1	4	0	81	
21	в♀з	4	W♂2	0	0	30	28	54	0	112	
22	B♀4	4	W♂2	0	0	39	47	77	0	163	
23	B♀5	4	W♂3	1	0	10	38	63	0	111	
24	B♀6	4	W♂3	0	_						
25	B♀7	4	W♂4	0	_						
26	B♀8	4	W♂4	0	0	43	45	73	0	161	
27	B♀9	4	W♂5	0	0	32	29	35	0	96	
28	B♀9	4	₩♂5	0	-						
29	B♀11	4	W♂6	0	0	22	32	45	88	187	
30	B♀12	4	W♂6	0	0	2	2	69	0	73	
31	B♀13	4	₩♂ 7	0	0	0	0	47	51	98	
32	W♀13	0	₩♂ 7	0	0	0	0	0	70	70	
33	B♀14	4	W♂8	0	54	39	2	6	0	101	
34	W♀14	0	W♂8	0	-						
35	B♀15	4	W♂9	0	52	51	0	0	0	103	
36	W ♀15	1	W♂9	0	0	8	3	23	41	75	

W: W. ; B: B . .

4. Discussion

13, 15, 17). A -

1, 7, 8, 26, 30). T.

C. Xu, et al. Aquaculture 512 (2019) 734249

Table 2 29

F	P	- .	L - , A	L - , A'		P _s - of ff s					
	F	М	F	M	S	S _c	Т -	Е	X ² (P)		
1	S _.	S		AA	88	0	88	1:0	NA		
2	S	S		AA	218	0	218	1:0	NA		
3	S	S		A	57	53	110	1:1	0.787		
4	S	S	A	A	152	49	201	3:1	0.908		
5	S.	S		A	65	67	132	1:1	0.902		
7	S	S		AA	129	0	129	1:0	NA		
8	S	S		AA	170	0	170	1:0	NA		
9	S	S		AA	177	0	177	1:0	NA		
10	S	S		AA	195	0	195	1:0	NA		
11	S	S		AA	174	0	174	1:0	NA		
12	S	S		AA	239	0	239	1:0	NA		
13	S	S	Α	AA	81	0	81	1:0	NA		
14	S	S		AA	96	0	96	1:0	NA		
15	S	S	AA	AA - A	99	0	99	1:0	NA		
17	S	S	AA	AA	112	0	112	1:0	NA		
18	S	S	Α	AA	118	0	118	1:0	NA		
20	S	S	AA		81	0	81	1:0	NA		
21	S	S	AA		112	0	112	1:0	NA		
22	S	S _c	AA		163	0	163	1:0	NA		
23	S	S	AA	A	111	0	111	1:0	NA		
26	S	S	AA		161	0	161	1:0	NA		
27	S	S	AA		96	0	96	1:0	NA		
29	S	S	Α		99	88	187	1:1	0.569		
30	S	S	AA		73	0	73	1:0	NA		
31	S	S	Α		47	51	98	1:1	0.775		
32	S	S			0	70	70	0:1	NA		
33	S	S	AA		101	0	101	1:0	NA		
35	S	S	AA		103	0	103	1:0	NA		
36	S	S	Α		34	41	75	1:1	0.566		

C. Xu, et al. Aquaculture 512 (2019) 734249

Table 3

F	-, P, -	P., - , - ,		L - , B		P ff							
	F	M	F	M	S	S	U -	Т -	E	X ² (P)			
1	U -	S	BB		0	88	0	88	0:1	NA			
2	U -	S	BB		0	218	0	218	0:1	NA			
3	U -	S	BB		0	57	53	110	0:1	NA			
4	S	S	BB		0	158	43	201	0:1	NA			
5	U -	S	BB		0	65	67	132	0:1	NA			
7	U -	S	BB		0	129	0	129	0:1	NA			
8	U -	S	BB		0	170	0	170	0:1	NA			
9	U -	S	BB		0	177	0	177	0:1	NA			
10	U -	S	BB		0	195	0	195	0:1	NA			
11	U -	S	BB		0	174	0	174	0:1	NA			
12	U -	S	BB		0	239	0	239	0:1	NA			
13	S	S			81	0	0	81	1:0	NA			
14	U -	S	BB		0	96	0	96	0:1	NA			
15	S	S			99	0	0	99	1:0	NA			
17	S	S			112	0	0	112	1:0	NA			
18	S	S	BB		0	118	0	118	0:1	NA			
20	S	U -		В.	43	38	0	81	1:1	0.693			
21	S	U -		BB	0	112	0	112	0:1	NA			
22	S	U-		BB	0	163	0	163	0:1	NA			
23	S	S		BB	0	111	0	111	0:1	NA			
26	S	U-		BB	0	161	0	161	0:1	NA			
27	S	U-		BB	0	96	0	96	0:1	NA			
29	S	U -		BB	0	99	88	187	0:1	NA			
30	S	U -		BB	0	73	0	73	0:1	NA			
31	S	U -		BB	0	47	51	98	0:1	NA			
32	U-	U-	Α	Α	0	0	70	70	-:-	NA			
33	S	U-		B.	54	47	0	96	1:1	0.621			
35	S	U -		B.	52	51	0	101	1:1	0.944			
36	S	U -	BB - B	BB	0	34	41	75	0:1	NA			

Table 4

F	P., -	P.,		L C		P				E	- X ²	P
	F	M	F	M		3	2	1	T -			
1	S _.	S	С	С	S _.	19	10	35	64	3:1	0.732	0.002
					S	7	12	5	24			
7	S _.	S	С	C	S	34	9	55	98	3:1	0.885	0.050
					S	15	6	10	31			
8	S _e S _e	S	С	С	S	31	23	76	130	3:1	0.8	0.009
				S	15	13	12	40				
26	6 S S	S	C	С	S	23	37	63	123	3:1	0.795	0.000
					S	20	8	10	38			
30	S	S	С	C	S	2	2	50	53	3:1	0.706	0.457
					S	0	0	20	20			
Γ-	-	-	-	_	S	109	80	279	468	-	-	-
					S	57	40	56	153			

T. - . H - . , . . -

fi . - . fl . . . L P , 1990; S - - -, 2000). I - , .

C. Xu, et al. Aquaculture 512 (2019) 734249

T. . T, fi . - , P fi , , T, . S-, . fi

Acknowledgments

- N - N S F - C (31772843), S - P - (2017L GC009), F - R F - C U (201762014), T S - S P - - S - - .

References

- A 434, 249–253.

- ..., S., L., Q., L., I., Y., H., K.-., L., 2017. H

 P fi (Crassostrea gigas)

 A 476, 65–71.

 W , J., L, Q., ..., X., S.-., J., K.-., L., Y., H., 2018. A

 EST-SNP QTL

 gigas. A 492, 226–236.

 X , D., L, Q., K.-., L., Y., H., 2018. H

- fi -