C. hongkongensis C. sikamea (1 ; . 2004). , -(. 200 ; . . 2012,

201). , C. hongkongensis C. angulate (. 201), C. hongkongensis C. sikamea (. 201) C. hongkongensis C. ariakensis (. 201). _ ,

gensis C. gigas (. 201),

C. sikamea , (. 201), - *C. sikamea C. gigas* (. 1 ; . 2012).

C. sikamea (. 201). , ; -(. 2004). , -(.1 4; . 200 ; . 2012). -*C. gigas*

C. sikamea

. C. sikamea,

, *C. gigas*, , (2011),

sikamea C. gigas , , - -C. gigas C. sikamea

D Springer

Material and methods

Brood stocks and rearing conditions

C. sikamea , , , . - - C. gigas (200) . 201, . 201, . (2011). . (2011). , C. gigas 1. 1, , C. sikamea 1000-2.2 0. 2 0 .

Fertilization and embryo hatching

C. sikamea 201 ,

, , , , % , 0

C. gigas () C. sikamea () (1).__, 0 0

С.

(201). _ · C. gigas \Im (), C. gigas \Im (), C. gigas \Im (), C. sikamea \Im ().

· , , 0-0 **4**0 ¹ .

Fisheries Science (2019) 85:821-828

 $\overline{\textcircled{D}}$ Springer

Table 2		(I)	,			C. gi	gas (), <i>C. s</i>	ikamea (),		()),	(H	I)	
												(%)					
	()		(%	5)	(%)		-,	(%)	1	12	21	12	20	2	210		20
1	0.		4.1		2.		1.1		2.			4.		2. 1		1.02	
2	0.		2.		. 1		.1		24		11.	.1				1.	
	1.1		0				.2		1					.2		0.	
4	1. 2		.1				1.		1		4.	.1		.02		0. 1	
_	1.1	0. 2	. 1	4.0	. 2	.12	.12	. 4 1	21.1		.2 .4	4.	2.2	•	1.	1.04	0. 4 1
1			4.2		0.		•		1.			. 2		4.0		2	
2			1						2		10	.4				2.	
			0		.14		. 1		0			.0		.4		2.0	
4			•				. 4				•	•		.1		1.0	
_			.1	. 2	1.2		1.22	12.	0.		. 1.	.2	1.	4.4	0. 2	1.	0.
1			1. 2		0.												
2			0.2														
			0.0														
4			0.4		0.0 2												
1	4.				1.											1.	
2	4.4		. 1				2.22		20			. 2		4 .1		0.	
	44 .02		1. 4		.4		. 1		1		4.	2.1		1.24		0.41	
4	4		4.44				2. 4		40		12			. 4		1. 4	
_	4.4	0.4	2.12	.11	.0		0.	1 4.4	2.	11.	.0	4. 2	2. 2	.1	1. 2	1.0	0.
H (%)			4.24		4.				2.			2.2		2.1			
I (%)					. 4		11.		11.		.1	0.		4 0. 4		.2	
		, <i>n</i>	120 (4		0	.);		,					, <i>n</i>	4 ()		-
	•		(p 0.0)		,						•						
		0					-										
.0							-	,				-			(H	I)	
0											(1).					
					0.01			-	H(%)	= (28)	- GG -	- SS)/(G	G + S	$\times (22)$	100		
									11 _t (70)	- (20	0 00	55)/(0	010	55) X	100,		
Static	tical a	nalve	·ic									,					
314115	licai a	narys	012								·	_				C. sik	amea
												(I)				
-	,	,				•			Ing(%) = (X)	$(-X_{\cdot})$	$\times 100 / X$					
									1 SG(70)	$\mathbf{v} = (\mathbf{n} \mathbf{v})$	FI A_{A1}	x 100/11 _P	11,				
-				()					A _1	V						C
									aikar	,	Л						U.
			-					-	sikam	Сd.							
								-									
				,													
		-				•											
					1.0												

p 0.0.

Results

Fertilization

sikar	nea			C. gigas	С.
1	.1	C. gigas	, 4.4	<i>C. s</i>	sikamea
(2)!			,	
			•	,	-
	0.	1%,			-
	. 1%,	.1 %	2.12%	,	
	,	. (2);		
	,				•

Survival

Table 3

-

1	2	0.00 4 0.00 0.00 0.00 0.00 0.00	F .00 11. 0 .1 10. 2 20.	0.002** 0.001*** 0.001*** 0.001***			F	
1	2	0.00 4 0.00 0.00 0.00 0.00	.00 11. 0 .1 10. 2 20.	0.002** 0.001*** 0.001*** 0.001***				
I	2	0.00 0.00 0.00 0.00	11. 0 .1 10. 2 20.	0.001*** 0.001*** 0.001***				
1	2	0.00 0.00 0.00	.1 10. 2 20.	0.001^{***} 0.001^{***}				
I	2	0.00	10. 2 20.	0.001***				
I		0.00	20.					
I		0.00		0.001***				
1		0.00	2.0	0.001***				
	2	0.14	1.11	0.001***	2	0.20	1 .1 0	0.001***
		0.0	.0 0	0.001***		0.00	0.	0.
		0.10	111. 1	0.001***		0.00	0.40	0.
1	2	0.0 4	124.	0.001***	2	0.		0.001***
		0.0 0	120.0 1	0.001***		0.00	0.	0. 21
		0.041	1.	0.001***		0.00	1.0	0.
1	2	0.0	4.1	0.001***	2	0. 4		0.001***
		0.122	. 0	0.001***		0.00	0.	0.40
		0.0	44. 4	0.001***		0.00	0.	0.
1	2	0.0 2	.401	0.002**	2	2.	14.42	0.001***
		0.1	20.221	0.001***		0.0	4. 4	0.00 4 **
		0.0	. 1	0.001***		0.1	.02	0.001***
1	2	0.10	4 . 0	0.02 *	2	2.14	10.2	0.001***
		0.1 0		0.001***		0.0	2. 1	0.04 *
		0.0	2. 02	0.0 *		0.0	2.	0.00 **
1	2	0.41	4.240	0.02 *	2	0.2	4 .1	0.001***
		0.0	0.	0.4 1		0.00	0.	0.4
		0.212	2.1	0.0 4		0.01	2.004	0.0 4
	 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\begin{array}{cccc} & 12 &) \\ *p & 0.0 ; **p & 0.01; ***p & 0.001 \end{array}$

,	Ι	0. %	120	; 40.4 %	Ι		2.2%	(4), 120 2 4.4 %
210.	,				210.			(
	(p 0.0)	(<u>2</u>);		-)		
	1					-	(<i>p</i> 0.001) ().
		().						
					Genetic co	n rmatior	า	
Growth								
							1	C. gigas C.
					sikamea		,	0 (1),
	4.							
								. , <i>Hin</i> -
(p 0.0 ;	, 4).					-	1	C. gigas
				,		(200	00),	
				$(p_{ } 0.0)$.		C. sikam	ea,	
,							_1 (_	. 1).

Table 4	C. gigas (), <i>C. sikamea</i> (),	()	,	(H)	-	-
(I)								

	()	12 ()	21 ()	120 ()	210 ()	20 ()
1	122.40	141.	2 1. 1	12.	1 4.4	1.1
2	1.42	1 .2	2.	12.	1.4	2.01
	121.1	142.	2.4	14.44	1.22	2.
4	12 .	140.2	2.2	14.2	1.0	2.
_	12 .1 2 .4	1	2 0. 4 .2	1.0.	1 .02 0.41	2.1 . 2
1	102.	11 .	21 .		11.01	0.20
2	.0	11 . 0	21 .	10. 2		2 .01
	102. 2	11 .	21 .2	. 1	10. 1	2.14
4	.2	11 .	210.	. 4	10.42	2.
	100. 1.	11.42.	214.1 42. 4	. 2 1.	10. 0.4	2.2.1.1
1	10.1	12.1	2.0	.2	. 4	2.1
2	10 4 .	11 . 0	2 4.4	. 2	.4	2.2
	10 4 .	112. 4	2 2. 4	. 2	.2	2.2
4	. 0	11 .41	2.		. 2	24. 4
_	100. 2.	11 .1 0.	21	.0 0.	. 1 1.	2.2 4.
H (%)	11.	.2	21. 4	1.	10.00	2.2
I (%)	0.2	1.14	1.	2.2	24.4	

, *n* 120

.

(*p* 0.0).

-1

Discussion	. 2010; _ 2012).	C
, C. sikamea C. gigas.	angulate (. 201) C. hongkongensis sikamea (. 201),	С. С.
C. sikamea C. gigas , C. gigas C. gigas C.	, C. ariakensis C. sikamea. C. virginica	а С.
C sikamea	gigas C. gigas C. angulata (.1 ; . 2002; .200).	-
(. 2012).	_1	-
(.201). , .1 %,	, 201). , (sikamea)	<i>C.</i>
· , , , -	, 2 . 2% 120 2 4.4 % 210.	
<i>Crassostrea</i> (. 1 ; . 200 ; 201).	(201)	-
(
, , , , , , , , , , , , , , , , , , ,		
C. gigas C. sikamea . , C. gigas C. sikamea .		
200 ; . 2011). (
(201), -		
<i>Crassostrea</i> (

,

· , (

- (1) Crassostrea virginica () C. rivularis (С. gigas (). 11 2 2 (1 4) , _ ,_ , Crassostrea gigas C. sikamea. 121.12 1 (2001)_ , , 10.2 , (200), Crassostrea ariakensis Crassostrea virginica[.] 2 . 00 (200) Crassostrea sikamea 2 · 1 22 _ (1) (Argopecten circularis, , 1) 212. 110 (200) (Crassostrea gigas). 24 21 22 (2010)(Crassostrea gigas). 2 21 2 (200) (201)Crassostrea sikamea · 11 (1) 14.22 (200) Crassostrea gigas. 2 2.1 2 (1) _ • Crassostrea sikamea 1 (2012) Crassostrea sikamea ·2 2 (201)_ Crassostrea hongkongensis $\begin{array}{c} \bigcirc \\ \\ \end{array}$ Crassostrea ariakensis $\begin{array}{c} \bigcirc \\ \\ 2 \end{array}$. (2011) -Haliotis[.] (201) (Panopea zelandica). // . /10.101 / 002 1 41 001 (2011)Crassostrea ·4 4 gigas. _ (200) Crassostrea gigas. **4**2 ·21 220 (2012) ,___ (Crassostrea virginica) $2 \cdot 1$ (200) -
- , , (200) *Mytilus edulis M. trossulus.* $14 \cdot 1 2$ (1) $1 \cdot 1 1$

(200) 214. (2002)Crassostrea gigas, C. angulata 1 24 2 0 ,____ (201) 12.01 2 1 (200) Crassostrea ariakensis 414 (200) 2 4 (2004) Crassostrea rivularis (, 1 1) 242.1 1 (2012) (Crassostrea gigas). 11.41 41 (201) . 12) Crassostrea sikamea (2.4 44 (201) 202 (2011)Crassostrea sikamea, Crassostrea. $0 \cdot$ (200) Crassostrea ariakensis C. 2 .4 (201) , , Haliotis discus hannai H. fulgens. **44** ·2**4** 2**4** (201) 1 .1 11 (2012) 1.1 2 (201) Crassostrea hongkongensis (, 200) &__ . 4 1 11 (201) $Crassostrea hongkongensis \bigcirc C. angulata \bigcirc 4$ (201) , Crassostrea hongkongensis 4 0 101 C. gigas (201) , , ,___ , , Crassostrea hongkongensi Crassostrea sikamea . 4 10 1

Publisher's Note