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and oxidation of o-diphenols. It is thus also classified as a phenoloxidase. Tyrosinase is well known for its key 
biological role in melanin biosynthesis via transformation of tyrosine to L-DOPA. Tyrosinase functions in pig-
mentation and innate immunity47. In addition, other products of the melanin pathway participate in cuticle scle-
rotization in insects49.

In Mollusca, tyrosinase have been suggested in pigmentation and biomineralization of seashell. Cephalopod 
tyrosinases are expressed in the ink sac, suggesting an important role in melanin production50. In P. fucata, three 
tyrosinase genes have been characterized, Pfty1 and Pfty2 are suggested to function in prismatic formation and 
OT47 is proposed to influence the periostracum formation51,52. In C. gigas, Cgtyr1 was cloned and proposed to 
specifically function in the initial phase of the larval shell biogenesis23. CgTyr2 was also cloned and showed high 
levels of expression in mantle edges. It has been suggested to play a role in the formation of periostracum/pigmen-
tation24. These reports strongly suggest that tyrosinases play diverse roles in stages when seashell is constructed, 
pigmented, and covered with the periostracum.

Twenty six tyrosinase genes were identified from C. gigas genome. Two tyrosinase genes CGI_10007793 and 
CGI_10011913 were found to be identical to the reported Cgtyr1 and CgTyr2, respectively (Fig. 5). The tyrosinase 
gene family can be further classified into three types: secreted form with signal peptides (Type A), cytosolic form 
(Type B) and member-bound form (Type C). According to SignalP v4.0, and TMHMM Server v2.0, there are six 
TypeA tyrosinase genes, 15 Type B tyrosinase genes and five Type C tyrosinase genes. The phylogenetic tree of 26 
tyrosinases showed that there are eight pairs of duplication genes. Among them, only two pairs of CGI_10021076 
Type C and CGI_10021075 Type A, CGI_10009319 Type A and CGI_10009318 Type B are located in the same 
scaffold separately, belonging to intragenic duplication. The phylogenetic tree showed that the clusters of tyrosi
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parallel evolution, adaptation to the environment etc. The highly conserved proteins tyrosinase and chitotrio-
sidase are identified in bivalve, and the relatively conserved proteins with domains of CA, VWA, CBD, IG-like 
and LaG are identified from all ten species. 25 genes encoding SMPs were annotated and characterized that are 
chitin related or ECM related proteins involved in crystallization of CaCO3. These conserved SMPs and universal 
domains enrich the molecular knowledge of shell formation mechanism in C. gigas, urging for a refined shell 
formation model including both chitin and ECM-related proteins.
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