

Cucullaea labiata

_ _ _ _ (, e.e. e.e. e.e. e.e. e.e. e.e. e.e. .e .. .s. .. .e .e .e s , s .e .e .es .e .es - .e - / æ a lee a $e s e e (\underline{c} - \underline{c})$.eeeeeee .es .e (a e a e s.es s.e 20. 0. 0.2

Published online: 20 April 2017

(,) , , , , , s , , , , **e** _ .e e e e .e .es .es .es æ s .e .e . .e e.e .e .s æ . , , **e** , , , .e .e e e s · .e .e.s.e...es .e. $\mathcal{L} \subseteq \mathcal{L} \subseteq \mathcal{A} \subseteq \mathcal{A}$ _ //_ (/ .e) e 2 o. o. . . . (, . . **e** ,e .es .e .e .e se e (, ,e __) , ,e ,e s.e .e . . . es.ee .e. .e .e .e .e. .0.2 .0. . . .2 .00. 2 . .0. . . .0. . . .0. . . .0. . . .0. .e. 2 is the theorem in the transformation of the transformation V^{J} and the second constant V^{J} and the second constant V^{J}

 $\underline{\widehat{\mathscr{D}}}$ Springer

.e. s .e. .e. .e. .e. .e. .e. .e. .e. a. a.a. aa. .es (.es (.e s.e .e s.e .e s.e .e s.e .es s. .e .e .e .e ..e o.e so .es s.e \$.C .C\$.C .C .C .Ce .e **.c**s - s s . . .**e**

, K

.e () s. .e .e .e .e .e. % s.e.e

 s.e
 e.e
 s.e
 e
 s.e
 s.e

 s.e
 e
 s.e
 s.e
 s.e

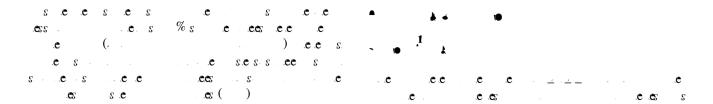
 s.e
 s.e
 s.e
 s.e
 es $c_{\chi} h \rightarrow c_{\chi} c_{\chi}$ esse es

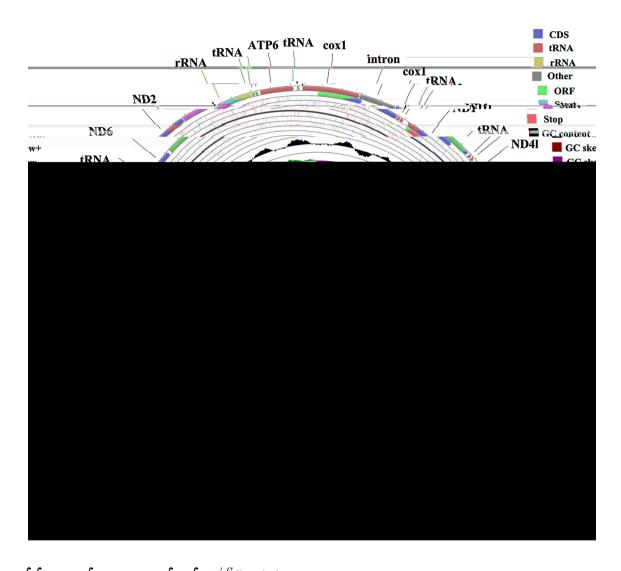
, . .) , , .e s.e () . 2 - 9. 9. 2 - 9. 2 - 9. 4 - 9. .e (= + .s s e) $(\quad \underline{\quad} \quad \underline{\quad$ (_) .e s.e (\$ \$.**e** _ _ .**c**s . .s .**e** . , . . . s .e .e. .e. . .e. .e. .e. .e. .e. .e. . .**e** .e .e s . _____ 9. 9. 9. 9. 9. 9. 9. 9. . . .e s.e . e .es _ .e _ _.

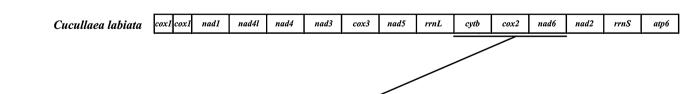
> es se e .e .e .e (' = ')_(.)

s s ...e s.e .e

- 10 22


· 1	2	e s	.e .	Œ	-	€.€		-	.е	•	es.e	æ	C	.e .e	s.e		-	e e	30.3
-----	---	-----	------	---	---	-----	--	---	----	---	------	---	---	-------	-----	--	---	-----	------


000	. 33		e e .e
- 1 Ø <u>~ _</u>	e	,	
<u>e</u> <u>e</u>		, · · · ·	
· <u>-</u> <u>-</u> <u>-</u> · <u>-</u> · <u>-</u>		, · · · ·	· -
<u>£</u> <u>_</u> ,,		.e	· -
· <u>«</u> £ _ · · _		, · · · ·	J
. , <u>c</u> , , <u>_</u> , <u>_</u> ,		
· · · · · · · · · · · · · · · · · · ·		
1- C- 11.10		.e / .e / .e	_ J ,
		J
$ \underline{\mathscr{L}} \mathcal{L} = \mathcal{L} \times \mathbb{Z} = \underline{\mathscr{L}} \times \mathcal{L} \mathcal{L} $		* · · · · · · · · · · · · · · · · · · ·
/ / /		Se. See.	
· _ ' · / '		3. 3. 4. 3. 4. 3. 4. 3. 4. 4. 4.	
' · _ '_		Se. See.	
' ' ' - ' - ' - ' - ' - '		Se. See.	_J , _
· _ ' · _ ' <u> </u>		Se. See.	J ,
' '		3. 3. 4. 3. 4. 3. 4. 3. 4. 4. 4.	
' · ' · · <u>&</u>		3. 3. 4. 3. 4. 3. 4. 3. 4. 4. 4.	,
' ' ' _		Se. See.	
(/ 2 . // =		3. 3. 4. 3. 4. 3. 4. 3. 4. 4. 4.	· = · · ·
. = '''		3. 3. 4. 3. 4. 3. 4. 3. 4. 4. 4.	${f J}$,
$=$ cc $=$ \sim \leq χ		3. 3. 4. 3. 4. 3. 4. 3. 4. 4. 4.	J , .
.11 _ 10 1 11 & 11		.e	
d <u>£</u> <u></u> . !		.e	
.11 (10		.e	. , , ,
.11 . 11		,	, (e .


.e) J

Scapharca broughtonii

Scapharca kagoshimensis cox1 nad5 nad1 nad4 cytb cox2 nad6 atp6 rrnL nad3 nad41 cox3 rrnS nad2
Tegillarca granosa

e de la companya de l

_ · · _ (_ · · · · e · ·) e .e · s $(c \ldots c_{X} c_{X} c_{X})$ $s s \cdot c \cdot (c \cdot c)$ $s \cdot c \cdot c \cdot c$ · _ _ \$-.e. .e.() i.e. i.e. i.e. $\underline{}$ Let use (\square) be selected $\mathcal{O}_{\mathcal{X}}$ \subseteq 7 ,e , + , e , . , , , , , , , , , , (, , , , %) . . . **e** , , . **e** , . . **e** , . . **s** , . . **s** , . .

s a second contract of e e e e e e

1 Ale Lange Ale

.e , .e .e .

6. <u>k</u>	. \$.CS
e ,e ,		.e .es
- 1 C 🗠 _		
	.e	æ

	%			%			%			%
(_)	_ , _	. ()		. ,	. ()		- , .	, (a)		
. (_)	, ,	()			()	,		, . (,)		
. ()	, , ,	()			()			, . ()	,	, -
, ()	, ,	. , ()		, .	()			, , ()		,
. ()		()		,	()			. , ()		
()					()			. , . ()		
()	,	()			()			. , . ()		
. ()		()		,				. , , ()		
. ()	, , -	()	,		()			. ()		
()				,	, , , ()			()		
(_)		()			()			()	, ,	
. (_)		()			()	,		. , , ()		- ,
(X_1, X_1)	,	, a (a)		- ',	()			$p_{i} = p_{i} = \left(p_{i} = 1\right)$,	
$V = V_1^{-1}$, , , , , , , , ,			, w (,)	,		, , (,)		
$(X_1, X_1, X_2, X_2, X_3, X_4, X_4, X_4, X_4, X_4, X_4, X_4, X_4$	-	, . , (,)			, , , (,)			, , ,)		,
(Y_1)	,	, a (a)			, , (,)			, , , (,)	. ,	, ,

· \$. 2 . 2 . 1. 2 . 1 . 1 . 1 . 1 . 2 . 1. __ ...e ...e ...e ...e ...e ...e .e.e.e.se.e.es e e

cox1

 $c_{\chi}I$ e.e. - $^{\prime}$ $^{\prime$.c . . .c . . .c . . s se e 2= 9. . . 9. . 9. 9. 9. 2 . . 2 ..e.s ...s ...s ...s .e.e.e.g.,g.e.e.e.e.g .e .e.e..es s .e S .e. s. .e. s. s. .e. s. s. .e. s. e. s .ce .cs.e .cs.e

e.e. s. .e. s .e . .e

 $\mathbf{e} + \mathbf{e}$. $\mathbf{e} + \mathbf{e}$. $\mathbf{e} + \mathbf{e}$. $\mathbf{e} + \mathbf{e}$.e .e)+, .e .. .s .. .e .. .e .. e (...)

.

_ 11 • 1 - 0.00 - 0.0 - 0.0 - 0.0 0.0 e

e de la cere de la cer e^{J} = () = .e .e .e - 2 ...S e e e e e e e 22 , **J** , . . **(**)c. .e --2 2 2 s. v. v. es .e , .e , .e s.e .e .es , e , , e .e .e .e. .e. ... _ <u>_</u> _ . . <u>_</u> J _ _ () _ .e . . .e . .e

() .e .e

