
Vol.:(0123456789)1 3

Conserv Genet (2018) 19:275–282 
DOI 10.1007/s10592-017-0998-7

RESEARCH ARTICLE

Cryptic genetic diversity of Neverita didyma in the coast 
of China revealed by phylogeographic analysis: implications 
for management and conservation

Dan Zhao1 · Lingfeng Kong1 · Hong Yu1 · Qi Li1  

Received: 8 August 2016 / Accepted: 19 July 2017 / Published online: 25 July 2017 
© Springer Science+Business Media B.V. 2017

Keywords Evolutionarily significant units · Genetic 
conservation · Phylogeography · East Asia

Introduction

The presence of cryptic species and/or hidden genetic 
diversity poses a formidable challenge for the accurate 
assessment of biodiversity and conservation. The species is 
the taxonomic category most frequently used as conserva-
tion unit (Mace 2004). However, species classification may 
not reflect the underlying/cryptic genetic diversity worthy 
of conservation efforts, as it represents the potential of pop-
ulations to evolve and adapt (Moritz 1994). With the help 
of molecular data, conservation geneticists investigated 
alternative intraspecific units of conservation allowing 
cryptic genetic diversity to be taken into account, for exam-
ple the evolutionarily significant units (ESUs) and man-
agement units (MUs) (Torres-Cambas et  al. 2017). As an 
effective tool to identify these units, molecular taxonomy 
coupled with phylogeography, apart from the pure discov-
ery of hidden species diversity, can offer insights into the 
spatial structure of genetic diversity in understudied marine 
organisms, and the historical and ecological processes driv-
ing their present-day distribution (Leasi and Norenburg 
2014). Practically, conservation genetics of marine species 
has so far been concerned primarily with this effective tool 
when designating conservation priorities (Moritz 2002).

Phylogeographic patterns and species diversity data can 
be effectively combined for integrated conservation plan-
ning at the level of communities and biogeographic sub-
regions (Reilly et  al. 2015). In the north-western Pacific, 
three primary factors influence the phylogeographic pat-
terns of marine species: (1) population isolation and expan-
sion during glacial cycles (Ni et  al. 2014; Wang et  al. 
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2016), (2) gene flow induced by ocean currents (Guo et al. 
2015), and (3) the discharge of the Yangtze River outflow 
(Dong et  al. 2012; Wang et  al. 2015). Corresponding to 
these factors, Spalding et  al. (2007) defined four marine 
ecoregions (Yellow Sea, East China Sea, Southern China, 
and Gulf of Tonkin) for regional protection management 
along the coastal and shelf waters of China. Nonetheless, 
genetic subdivision has been detected recently within the 
Yellow Sea ecoregion (Han et  al. 2015; Ni et  al. 2015), 
suggesting that the conservation units may be underesti-
mated in this insufficiently explored area. Moreover, the 
present patterns of genetic structure in the marine realm 
is more likely a product of complex species-specific eco-
logical processes. The ecoregion-based protection strategy 
may not be applicable to all cases, especially at the species 
level. Indeed, conservation biologists ought to consider the 
evolutionary processes operating within a species and then 
develop a criteria and strategy relevant to protecting the 
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ESUs delimitation

The relatively conserved morphology of N. didyma pre-
sents substantial challenges when applying morphological 
taxonomy methods for ESUs delimitation. As an alterna-
tive approach, DNA barcoding and single-locus coalescent-
based methods were employed to assess cryptic diversity. 
ABGD method uses the ordered, ranked genetic distances 
from COI fragments to distinguish significant shifts from 
low intraspecific distances to higher interspecific dis-
tances. These observed transitions in genetic distances 
assigns sampled individuals into separate groups (Puil-
landre et al. 2012). The GMYC method (Pons et al. 2006) 
separately models the fit of Yule and coalescent processes 
to an ultrametric tree to define the transition from species-
level to population-level processes. The PTP (Zhang et al. 
2013) models speciation and coalescent events relative to 
numbers of substitutions rather than time and uses heuris-
tic algorithms to identify the most likely classification of 
branches into population and species-level processes. These 
approaches provide objective, clade-specific threshold with 
which to delimit ESUs of diversity.

First, we used the Automatic Barcode Gap Discov-
ery (ABGD) method (Puillandre et  al. 2012) through 
the online server (http://www.abi.snv.jussieu.fr/public/
abgd/) with the default settings. Second, as recommended 

by Tang et  al. (2014), we implemented the Generalized 
Mixed Yule Coalescent (GMYC) method (Pons et  al. 
2006) with a BEAST tree, and the Poisson Tree Process 
(PTP) model (Zhang et  al. 2013) with a RAxML gene 
tree, both operated through the online server (http://
species.h-its.org). A half million MCMC generations 
were set for the bPTP analyses.

Prior to the delimitation analyses, phylogenetic relation-
ships among all haplotypes were inferred, using Bayesian 
inference (BI) and maximum-likelihood (ML) reconstruc-
tion methods implemented in BEAST v1.8.2 (Drummond 
et al. 2012) and RAxML v8.2.4 (Stamatakis 2014), respec-
tively. Prior to the phylogenetic reconstruction, the best-
fit model of nucleotide substitution was determined by 
JMODELTEST v2.1.1 (Darriba et  al. 2012) under the 
Akaike Information Criterion (AIC). GTR+G was selected 
as the most appropriate model for subsequent analyses. 
Branch supports were assessed using 1000 bootstrap rep-
licates for ML trees. For the BEAST analysis, the Yule 
process of speciation and uncorrelated log-normal relaxed 
clock model were used as the tree prior. Two independ-
ent Markov-chain Monte Carlo (MCMC) runs of 200 mil-
lion generations were performed with tree sampling every 
5000 generations. The first 10% generations were discarded 
as burn-in. Convergence and effective sample size (ESS) 
of estimated parameters were checked in TRACER v1.6. 

Fig. 1  Map of China showing 
the study sampling locations 
and the distribution of the three 
ESUs for Neverita didyma. The 
different colors in the pie charts 
correspond to the three ESUs 
(see Fig. 2 for ESUs identifica-
tion), and the labels within grey 
boxes on the left represent the 
ecoregions Spalding defined. 
(Color figure online)
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After that, the phylogenies were then subjected to GMYC 
and bPTP analysis.

Haplotype network and population genetics analyses

To investigate shallow relationships among closely related 
haplotypes, a median-joining network was constructed 
in NETWORK v4.6.1.3 (Bandelt et  al. 1999) for the COI 
marker.

To assess the genetic divergence among the distinct 
ESUs, distances between and within ESUs were calculated 
in MEGA 6 (Tamura et  al. 2013). Genetic diversity was 
analyzed using DNASP v5 (Librado and Rozas 2009).

Divergence time estimates

Estimation of the divergence times between the ESUs was 
conducted in BEAST v1.8.2 on the COI gene data using a 
calibrated molecular clock method. GTR+G was selected 
as the most appropriate model by JMODELTEST v2.1.1. 
Detailed prior settings were used as previously men-
tioned. Given the absence of a clear fossil or geological 
record, COI sequence divergence rates 1.52 and 2.4% per 
million years, calibrated for genus Nucella (McGovern 
et  al. 2010) and two trochid species (Hellberg and Vac-
quier 1999) respectively, were used to assess conserva-
tively a range of dates for key nodes. Note that sequence 
divergence rate = substitution rate × 2 (Wilke et  al. 2013). 
Detailed prior settings for each molecular clock are shown 
in Table 1.

Results

The 426-bp COI fragment (with no indels) showed a high 
level of polymorphism, with a total of 75 haplotypes for 
168 individuals. Among these, 58 haplotypes were unique. 
Shared haplotypes among different localities distributed 
mainly in Dongying (DY), Qingdao (QD), Dalian (DL), 
Nantong (NT) and Ningde (ND). Notably, individuals 
from Beihai (BH) and Laizhou (LZ) shared an identical 
haplotype (Fig.  3) despite being separated by more than 
3300 km. Individuals in Lianyungang (LYZ) did not share 
any haplotype with samples in other sites.

The ABGD, GMYC, and bPTP methods generated iden-
tical results, delineating three distinct ESUs (G1, G2, and 
G3; Figs.  2, 3). These ESUs did not map to distinct geo-
graphical distributions. The G1 clade contained individuals 
from BH, ND, NT, LZ, and DY; whereas, G2 clade com-
prised individuals from ND, LYZ, QD, DY, and DL. In 
comparison, the G3 clade contained haplotypes found only 
in LYZ. The median-joining network recovered the three 
well-defined ESUs. Two subnetworks were displayed in the 

G1 clade; two distinct lineages were also revealed in this 
clade in the phylogenetic analyses.

The pairwise genetic distances (uncorrected p-distance) 
were maximal between G1 and G2 (8.6%). Minimum dis-
tance value was found between G1 and G3 (5.8%). Dis-
tance between G2 and G3 was 6.8%. Genetic distances 
within each ESUs were 1.3% (G1), 0.8% (G2) and 0.4% 
(G3), respectively.

Figure 2 shows the N. didyma phylogeny based on COI 
gene sequence variation, using a calibration rate ranging 
from 1.52 to 2.4% per million years. The divergence date 
estimates revealed relatively recent split times among the 
three main clades. The initial divergence between Clade 
G1+G3 and Clade G2 was estimated at approximately 
1.442–2.382 million years ago (Ma), from the early Pleisto-
cene to mid-Pleistocene. Estimated divergence age between 
Clade G1 and Clade G3 ranges from 1.167 to 2.004  Ma. 
The most recent split between the two distinct lineages 
within G1 dates to 0.896–1.555  Ma corresponding to the 
middle Pleistocene.

Discussion

ESUs delimitation

Our results showed three distinct ESUs of N. didyma within 
the Yellow Sea ecoregion, suggesting cryptic diversity that 
until now, has gone unrecognized. Degree of phenotypic 
variation for N. didyma in the Yellow Sea ecoregion did not 
satisfy the divergence level of subspecies (Sun et al. 2012). 
However, morphological differentiation does not always 
correlate with genetic diversification. All three species 
delimitation approaches yielded identical results, providing 

Fig. 2  BEAST divergence time estimation of the three ESUs of Nev-
erita didyma using a calibrated molecular clock method. Node age 
intervals are shown at nodes. Timescales in million years before pre-
sent (Ma)
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strong evidence for this cryptic genetic diversity. Whether 
these ESUs represent distinct species remains unclear.

The p-distances among the ESUs ranged from 5.8 
to 8.6%. In contrast, individuals within each ESU dif-
fered by only 0.4–1.3%. Previous study showed that inter-
specific divergences ranged from 5.5 to 11.1% in genetic 
p-distances within Polinices, a genus closely related to N. 
didyma (Zhang 2003). Intra-specifically, p-distances varied, 
depending on species; Polinices cumingianus, Polinices 
mellosus and Polinices uber had low intra-specific diver-
gence ranging from 0.1 to 1.3%, even between individu-
als of the same species collected from widely separated 
localities. In comparison, individuals of P. sp. 1 differed 
8.6–9.1% in p-distance. The genetic divergence within 
the P. sp. 1 species was similar or even higher than that 

between other taxonomically distinct Polinices species 
(Huelsken et al. 2012). Given such a wide range of diver-
gences among species, we have not specified the taxonomic 
status of the three distinct ESUs detected in N. didyma 
through the divergence of p-distances at this time.

Indeed, the application of barcoding and single-gene 
based approaches to species delimitation has been a con-
troversial topic. Some caveats of single-gene approaches 
include the presence of pseudogenes (Bensasson et  al. 
2001), introgression (Ballard and Whitlock 2004) or 
incomplete lineage sorting (Funk and Omland 2003). To 
ascertain the taxonomic status of the divergent cryptic line-
ages in N. didyma, one or more nuclear unlinked genes will 
be required (Corl and Ellegren 2013). Nonetheless, for the 
purpose of setting conservation priorities and recognizing 

Table 1  Two molecular clock 
calibrations used to estimate the 
divergence time of the distinct 
Neverita didyma lineages

All units are per site per million years

Molecular clock Sequence divergence rates Substitution rates specified 
in BEAST prior distribu-
tion = normal

Hellberg and Vacquier (1999) Mean = 2.4% SD = 0.5% Mean = 1.2% SD = 0.25%
Mcgovern et al. (2010) Mean = 1.52% SD = 0.2% Mean = 0.76% SD = 0.1%

Fig. 3  Median-joining networks of Neverita didyma for CO1. The 
pie charts represent the haplotypes, and different colors correspond to 
sampling localities (DL: 1, DY: 2, LZ: 3, QD: 4, LYZ: 5, NT: 6, ND: 
7, BH: 8; see Fig. 1). Lines joining haplotypes refer to one base pair 

mutation and the black dots along the lines are missing haplotypes 
(not sampled or extinct). Circle sizes are proportional to haplotype 
frequencies. (Color figure online)
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the bulk of undescribed biodiversity, the COI identification 
system provides a reliable, cost-effective and accessible 
solution to the issue of species identification, and can serve 
as an effective approach of providing information for sus-
tainable management of marine species. For example, the 
COI identification system has disentangled the actual diver-
sity of meiofauna (Leasi and Norenburg 2014).

Interpreting phylogeographic patterns

Determining divergence times among the distinct clades is 
crucial for evaluating potential diversification mechanisms 
and historical biogeographic events. These information can 
provide an improved view of conservation for a particular 
species (Villanova et al. 2017). The estimated divergences 
among the three ESUs of N. didyma date back to the mid 
Pleistocene to early Pleistocene, a time frame that is con-
gruent with the hypothesis of isolation by Dongshan land 
bridge (Zhao et al. 2017).

In this study, the estimated divergence time between 
clade G1+G3 and clade G2 corresponds to the initia-
tion of large-scale ice sheets in Eastern Asia region, dated 
at 2.5–2.3 Ma. In this epoch, sea level fell by as much as 
50–60  m and the Dongshan land bridge emerged, sepa-
rating the populations in the enclosed ancient East China 
Sea (AECS) and the semi-closed ancient South China Sea 
(ASCS) (Cronin et  al. 1994). Comparable biogeographic 
events may have taken place during the time of divergence 
between clade G1 and clade G3. Similarly, estimated diver-
gence between clade A+B and clade C has been dated to 
1.983 Ma (Zhao et al. 2017). Nonetheless, no direct records 
demonstrate that the Dongshan land bridge emerged dur-
ing the period of 1.165–2.004  Ma. The coalescence time 
of subgroups within G1 dates back to 0.896–1.5547 Ma, a 
time frame that is congruent with the Middle Pleistocene 
Transition (MPT) (Pisias and Moore 1981). During this 
epoch, 40–50  m of sea level decrease was detected from 
0.9 to 1 Ma (Sosdian and Rosenthal 2009; Kitamura 2015). 
Vicariance between the deep trough in the Qiongzhou Strait 
and the ASCS following the emergence of the Qingzhou 
Strait landmass, which is 40 m below present sea level, may 
explain the observed substructure within G1. Given the 
absence of a clear fossil record, the time frame was calcu-
lated under the ‘time-dependent mutation rate’ hypothesis. 
As this hypothesis is still controversial (Bandelt 2008) and 
applying selected rates that may or may not apply to this 
particular species, conclusions abstracted here should be 
treated with caution.

Conservation implications

How to delineate and prioritize conservation units below 
the level of taxonomically recognized species has long 

been a debatable topic. Generally, biogeographic regions 
that have sustained the longest periods of isolation will rep-
resent the maximum species diversity and phylogeographic 
diversity (Moritz 2002). However, this recommended rule 
may not be appropriate in all circumstances. The admix-
ture of genetic lineages following the recolonization from 
separate refugia often poses difficulty in determining con-
servation units and stresses the need for species-specific 
treatment (Fraser and Bernatchez 2001). In this study, the 
genetic diversity of the populations that recolonized the 
Yellow Sea ecoregion should be composed of subsets of 
that in the source refugial populations. Hence, ecoregion-
based protection strategy is inappropriate for N. didyma.

Knowledge of the distribution of genetic diversity allows 
the identification of conservation units. Within N. didyma, 
the geographical distribution of the three ESUs was not 
ecoregion-based. Both ESU G1 and ESU G2 show wide 
overlapping geographical ranges, and if one stock is over-
harvested, it can be replenished by migrants from else-
where. By contrast, ESU G3 was found only in LYZ among 
all sampling localities. Under the ESU paradigm, the 
unique population LYZ is the primary focus of conserva-
tion concerns.

Knowing which places are the most important to con-
serve is central to marine spatial management (Crow-
der and Norse 2008). LYZ is located in Haizhou Bay, an 
area known for its unique genetic diversity of marine spe-
cies. Understanding the evolutionary history and tectonic 
structure in this area will help unravel the factors leading 
to the unique genetic diversity. Yuntai Mountain, situated 
in LYZ, was an island or seamounts prior to 300 years ago 
(Wang et  al. 1980). Presumably, it would have modified 
ocean currents and provided shallower substrates than the 
surrounding muddy abyssal plains. Similar to our findings, 
remarkable genetic differentiation was revealed between 
LYZ and northern populations based on mitochondrial 
data for the surf clam Mactra chinensis (Ni et  al. 2015). 
A genetic discontinuity was also detected in Haizhou Bay 
for the Asian paddle crab, Charybdis japonica (Han et al. 
2015). Together, these findings suggest that this region may 
be biologically unique, and therefore, necessary to protect 
from anthropogenic activities that threaten the extirpation 
of local populations and genetic diversity.

Indeed, perhaps the most important insight that marine 
ecologists can share with managers is that some places have 
much greater importance than others for particular species, 
ecosystems or processes, and hence for humans (Crow-
der and Norse 2008). The results of our study in China’s 
coastal areas also emphasize the need for more empirical 
studies on genetic diversity of commercially exploited spe-
cies in coastal environments. The information will provide 
valuable insights into the sustainable development of fish-
eries and biodiversity conservation strategies.
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