DOI: 10.3724/SP.J.1118.2018.17392

, , 266003

: (Sanguinolaria) ,

• (COI 16S rRNA), (H3 28S rRNA) 3 9 61 T12(COI 4) GC GC AT AT , , 4 (COI 16S rRNA H3 28S rRNA) 5.073 3.042 1.564 1.480, , 9 0.4, 4 COI (Pi<0.05) (Hd<0.5) 0~0.016, 0.087~0.331, (Sanguinolaria ovalis) (Sanguinolaria chinen-0.087 (maximum likelihood, ML) (Bayesian inference, BI) sis) 3 , ,

: ; COI; 16S rRNA; H3; 28S rRNA; : S917 : A : 1005 8737 (2018)05 0936 13

(Sanguinolaria),(Mollusca)(Bivalvia)(Nutallia)(Venerioda)(Tellinacea),(Psammobiidae)15^[1-2], (),

, , , , [3-4]

[5-7]

,

[1] 3 14 ,

(Psammotaea)12 ,

(Nutallia)1(Sanguinolaria oliva-[10]COI16SrRNAcea),(Hainania)1[11],H3(Sanguinolaria tchangsii)[2]1028SrRNA

[:] 2017-11-07; **:** 2017-12-28.

^{: (2016}ZDJS06A06); (201762014).

^{: (1991–), , , , . .} E-mail: 957924763@qq.com

^{: , , . .} E-mail: qili66@ouc.edu.cn

,

1

	_
Tab. 1	List of Sanguinolaria samples used in this study with sampling locality and numbers

					species				
sampling locality	S. acuta	S. chinensis	S. diphos	S. elongata	S. minor	S. ovalis	S.tchangsii	S. virescens	S. olivacea
Putian, Fujian Province, China			3						
Changle, Fujian Province, China		1				5			
Zhanjiang, Guangdong Province, China	3								
Beihai, Guangxi Province, China	7			4	1		5	3	
Haikou, Hainan Province, China				4	6				
Lingshui, Hainan Province, China				2				3	
Sanya, Hainan Province, China			1	3					
Wenchang, Hainan Province, China								2	
Lianyungang, Jiangsu Province, China									5
Qingdao, Shandong Province, China									1
Rizhao, Shandong Province, China									2

i

, 95 %	: 94 °C 30 s, 50 °C (
	LCO1490/HCO2198 48°C) 45 s, 72°C
1.2 DNA	45 s, 72°C 7 min PCR 2
[16]	μL 1.5%
10 mg , DNA DNA	,
, 1×TE 50 μL	1.4
1% DNA	DNAstar 5.01
; nanodrop DNA ,	SeqMan (http://www.DNASTAR.com)
100 ng/µL	, ,
1.3 PCR DNA	BLAST(https://
DNA	blast.ncbi.nlm.nih.gov/Blast.cgi) ,
, 1031F/	BioEdit v7.0 ^[21] CLUSTAL W ^[22]
1031R COI	MEGA 5.0 ^[23]
, O-F/O-R D-F/D-R	4 kimura2-
COI ,	paramter 9
PEF/PER 16S rRNA	DnaSp 5.0 ^[24]
$(2) PCR 50 \mu L : 5 \mu L 10 \times PCR$	DAMBE ^[25]
buffer, 8 µL dNTP(10mmol/L), 1 µL	COI 16S rRNA H3 28S rRNA
(10 μmol/L), 1 μL (10 μmol/L), 1 μL	SequenceMatrix1.7.8 ^[26]
DNA(100 ng/µL), 0.5 µL <i>Taq</i> (5 U/µL, TaKaRa),	PAUP 4.0b10 ^[27] 4
PCR 50 µL PCR	
: 94°C 3 min, 32	jMODELTEST ^[28]

	2 PCR
Tab. 2	The sequences of the PCR primers used in this study

		(5 –3)	/°C	
locus	primer	sequence(5-3)	annealing temperature	reference
COI	1031F	AGGATGATAATGCGAACTGA	50	this study
	1031R	GCGTGCGAAATAATACCAA	50	this study
	O-F	GATTATTACCTCCTGCTATTGC	50	this study
	O-R	CCTCTTACGAACTACACCTC	50	this study
	LCO1490	GGTCAACAAATCATAAAGATATTGG	48	Folmer ^[17]
	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	48	Folmer ^[17]
	D-F	TCACAAGGATATTGGTAGGT	50	this study
	D-R	ATGTAGTTCGTTGGGGAG	50	this study
16S rRNA	PEF	CTAAGGTAGCATAATAGTTCGTCCC	50	this study
	PER	GCAAACCCTAGCCTCAAATAAG	50	this study
	ar	CGCCTGTTTATCAAAAACAT	50	Palumbi ^[18]
	br	CCGGTCTGAACTCAGATCACGT	50	Palumbi ^[18]
28S rRNA	28sC1	ACCCGCTGAATTTAAGCAT	50	Hassouna ^[19]
	28sD2	TCCGTGTTTCAAGACGG	50	Hassouna ^[19]
Н3	H3F	ATGGCTCGTACCAAGCAGACVGC	50	Colgan ^[20]
	H3R	ATATCCTTRGGCATRATRGRGAC	50	Colgan ^[20]

i

:

5

		28S rRNA 61 244	
(Ruditapes philippinarum)		, COI 16S rRNA H3	3
(Bayesian inference, BI)	(maximum	28S rRNA 557~1482 b	р
likelihood, ML)	, BI	323~521 bp 272 bp 666 bp(3)	
MrBayes 3.1.2 ^[29]	, ML	CLUSTAL W ,	
PHYML version 2.4.3 ^[30]		387 bp COI, 272 bp H3 ,	,
2		(gap) 16S rRNA 336 bp	28S
2		rRNA 690 bp	
2.1 4		9 COI 16S rRNA H3	28S
PCR ,	COI 16S rRNA H3	rRNA ,	9

3

Tab. 3	List of sequences obtained for this study with GenBank accession numbers

genus	species	ID	GenBank		GenBank accession	no.
gonus	species	ID of specimen	COI	16S rRNA	Н3	28S rRNA
Sanguinolaria	acuta	acuta.bh1	MG517136	MG517014	MG517197	MG517075
		acuta.bh2	MG517137	MG517015	MG517198	MG517076
		acuta.bh3	MG517138	MG517016	MG517199	MG517077
		acuta.bh4	MG517139	MG517017	MG517200	MG517078
		acuta.bhbt1	MG517130	MG517008	MG517191	MG517069
		acuta.bhbt2	MG517131	MG517009	MG517192	MG517070
		acuta.bhbt3	MG517132	MG517010	MG517193	MG517071
		acuta.zj1	MG517133	MG517011	MG517194	MG517072
		acuta.zj2	MG517134	MG517012	MG517195	MG517073
		acuta.zj3	MG517135	MG517013	MG517196	MG517074
Sanguinolaria	chinensis	chinensis.cl1	MG517140	MG517018	MG517201	MG517079
Sanguinolaria	diphos	diphos.pt1	MG517141	MG517019	MG517202	MG517080
		diphos.pt2	MG517143	MG517021	MG517204	MG517082
		diphos.pt3	MG517144	MG517022	MG517205	MG517083
		diphos.sy1	MG517142	MG517020	MG517203	MG517081
Sanguinolaria	elongata	elongata.bh1	MG517154	MG517032	MG517215	MG517093
		elongata.bh2	MG517155	MG517033	MG517216	MG517094
		elongata.bh3	MG517156	MG517034	MG517217	MG517095
		elongata.bh4	MG517157	MG517035	MG517218	MG517096
		elongata.hkdm1	MG517145	MG517023	MG517206	MG517084
		elongata.hkdm2	MG517146	MG517024	MG517207	MG517085
		elongata.hkdm3	MG517147	MG517025	MG517208	MG517086
		elongata.hkdm4	MG517148	MG517026	MG517209	MG517087
		elongata.hn1	MG517149	MG517027	MG517210	MG517088
		elongata.hn2	MG517150	MG517028	MG517211	MG517089
		elongata.hnsy1	MG517151	MG517029	MG517212	MG517090
		elongata.hnsy2	MG517152	MG517030	MG517213	MG517091
		elongata.hnsy3	MG517153	MG517031	MG517214	MG517092

i

(to be continued)

(3 Tab. 3 continued)

						·····,
genus	species	ID -	Ge	nBank	GenBank accession r	10.
		ID of specimen	COI	16S rRNA	Н3	28S rRNA
Sanguinolaria	minor	minor.bh1	MG517159	MG517037	MG517220	MG517098
		minor.ls1	MG517158	MG517036	MG517219	MG517097
		minor.ls2	MG517160	MG517038	MG517221	MG517099
		minor.1s3	MG517161	MG517039	MG517222	MG517100
		minor.ls4	MG517162	MG517040	MG517223	MG517101
		minor.ls5	MG517163	MG517041	MG517224	MG517102
		minor.ls6	MG517164	MG517042	MG517225	MG517103
Sanguinolaria	olivacea	olivacea.jm1	MG517165	MG517043	MG517226	MG517104
		olivacea.lyg1	MG517168	MG517046	MG517229	MG517107
		olivacea.lyg2	MG517169	MG517047	MG517230	MG517108
		olivacea.lyg3	MG517170	MG517048	MG517231	MG517109
		olivacea.lyg4	MG517171	MG517049	MG517232	MG517110
		olivacea.lyg5	MG517172	MG517050	MG517233	MG517111
		olivacea.rz1	MG517166	MG517044	MG517227	MG517105
		olivacea.rz2	MG517167	MG517045	MG517228	MG517106
Sanguinolaria	ovalis	ovalis.cl1	MG517173	MG517051	MG517234	MG517112
		ovalis.cl2	MG517174	MG517052	MG517235	MG517113
		ovalis.cl3	MG517175	MG517053	MG517236	MG517114
		ovalis.cl4	MG517176	MG517054	MG517237	MG517115
		ovalis.cl5	MG517177	MG517055	MG517238	MG517116
Sanguinolaria	tchangsii	tchangsii.bhbt1	MG517178	MG517056	MG517239	MG517117
		tchangsii.bhbt2	MG517179	MG517057	MG517240	MG517118
		tchangsii.bhbt3	MG517180	MG517058	MG517241	MG517119
		tchangsii.bhbt4	MG517181	MG517059	MG517242	MG517120
		tchangsii.bhbt5	MG517182	MG517060	MG517243	MG517121
Sanguinolaria	virescens	virescens.bh1	MG517183	MG517061	MG517244	MG517122
		virescens.bh2	MG517184	MG517062	MG517245	MG517123
		virescens.bh3	MG517185	MG517063	MG517246	MG517124
		virescens.ls1	MG517188	MG517066	MG517249	MG517127
		virescens.ls2	MG517189	MG517067	MG517250	MG517128
		virescens.ls3	MG517190	MG517068	MG517251	MG517129
		virescens.wc1	MG517186	MG517064	MG517247	MG517125
		virescens.wc2	MG517187	MG517065	MG517248	MG517126
2	COI 16S r	RNA			4	. 2
GC 41.17	/% 41.01%	АТ		(T)	2
	,		(\mathbf{C})	(1	<i>י</i> רפי	2 ,
,	GC	,	(C)		, 200	
38.95% 38.64% 2	H3 2	28S rRNA		GC	, (A	.)
GC 5	59.37% 63.96 %	ó ,	3		, (G	r)
AT , H3	GC	,	3			
62.92%, 28S rRNA		GC	2.2			
, 65.47%,	64.98%	4	4			5
, ,	• •					-

940

i

,

4 COI 16 S rRNA H3 28S rRNA

Tab. 4 Nucleotide frequencies of COI 16S rRNA H3 and 28S rRNA gene fragments

gene (T) (C) (A) (G) COL 38.82 17.98 20.01 23.19 41.1	/0/2
COI 38.82 17.98 20.01 23.19 41.1	tent
20.01 30.02 17.76 20.01 25.17 41.1	7
16S rRNA 30.02 13.94 28.98 27.07 41.0	1
H3 17.21 31.20 23.41 28.17 59.3	7
28S rRNA 16.95 28.24 35.72 63.9	6

5 COI 16S rRNA H3 28S rRNA

Tab. 5 Genetic diversity parameters of COI, 16S rRNA, H3 and 28S rRNA gene fragments

gene	number of haplotypes	haplotype diversity	average nu- cleotide dif- ference	nucleotide diversity
16S rRNA	20	1.0000	52.5842	0.4045
28S rRNA	14	0.9130	37.7546	0.0569
COI	23	0.9399	63.7721	0.4141
H3	22	0.9388	18.3620	0.0673
16S rF	RNA		130	,
129		1		,
/	26	,		
<i>R</i> =3.042	28S	rRNA		154
	,	128		26
		/	21 .	
	, R=	1.480	,	
		COI		154
	14	, 001 53		1
	, 1.	/		1
	,	/	,	
	R=5.073	; H3		56
,	52		4	
,	/	,		
R=1	.564 (COI H3		
,				,
		3		
	COI		9	
0~0.016			, 0.087	~0.331.
· ····,			0.007	·····,

	, 0.087;
8	,
, 0.258;	8
,	, 0.219(
6) 16S rRNA	
0.001~0.011.	0.008~
0 393	0.008.
8	, 0.000,
0.219.	,
, 0.518,	0 0 1 5 (
,	, 0.245 (
7) H3	
0~0.009,	0.004~0.140,
	, 0.004;
8	,
, 0.129;	8
	. 0.091 (8)
, 28S rRNA	,
0-0.010	0.006-
0~0.019,	0.000~
0.191,	8,
	0.136;
8	,
, 0.064 (9)	
4	
1, COI	
90.70%,	GTR
,	^[21] COI
	14.06% H3
52.9	50/
2.000	0%,
3.89%,	GIR
	, 16S rRNA
28S rRNA	
,	
COI	[22]
SequenceMatri	ix COI
	16S rRNA H3 28S
rRNA .	gap 1555 bn
,	T12(data T12)
, DALLD 4 Ob10	T12(uata 112),
raur 4.0010	112 4
, <i>P</i> =0.096,	112
	[23]

),

	species	1	2	3	4	5	6	7	8	intraspecies genetic distance
1	S. acuta									0.000
2	S. chinensis	0.193								n/c
3	S. diphos	0.226	0.176							0.001
4	S. elongata	0.192	0.175	0.224						0.004
5	S. minor	0.170	0.191	0.225	0.169					0.004
6	S. olivacea	0.258	0.269	0.331	0.278	0.284				0.001
7	S. ovalis	0.216	0.087	0.164	0.196	0.216	0.314			0.005
8	S. tchangsii	0.245	0.236	0.244	0.219	0.249	0.274	0.261		0.000
9	S. virescens	0.206	0.209	0.235	0.178	0.189	0.265	0.196	0.275	0.016
	7 Tab. 7 Average ge	16 enetic dista	5S rRNA ances bas	ed on 16S	rRNA ge	9 ene fragmo	ents of ni	ne <i>Sangui</i>	nolaria s	species
	species	1	2	3	4	5	6	7	8	intraspecies genetic distance
1	S. acuta									0.004
2	S. chinensis	0.119								n/c
3	S. diphos	0.127	0.101							0.003
4	S. elongata	0.218	0.199	0.188						0.000
5	S. minor	0.186	0.208	0.190	0.248					0.011
6	S. olivacea	0.318	0.383	0.377	0.393	0.363				0.002
7	S. ovalis	0.138	0.088	0.090	0.181	0.201	0.387			0.001
8	S. tchangsii	0.256	0.245	0.257	0.290	0.294	0.325	0.252		0.007
9	S. virescens	0.169	0.192	0.186	0.157	0.208	0.368	0.165	0.251	0.005
		8	Н3		9					
	Tab. 8 Genetic	c average	distances	based on 1	H3 gene	fragments	s of nine S	Sanguinol	<i>aria</i> spec	ries
	species	1	2	3	4	5	6	7	8	intraspecies genetic distance
1	S. acuta									0.002
2	S. chinensis	0.020								n/c
3	S. diphos	0.016	0.011							0.000
4	S. elongata	0.069	0.082	0.069						0.013
5	S. minor	0.051	0.062	0.050	0.062					0.009
6	S. olivacea	0.137	0.146	0.137	0.129	0.138				0.002
7	S. ovalis	0.024	0.004	0.015	0.077	0.058	0.141			0.000
8	S. tchangsii	0.100	0.104	0.096	0.109	0.102	0.135	0.100		0.000
9	S. virescens	0.031	0.034	0.030	0.082	0.049	0.141	0.038	0.091	0.000
2.3										
	ML BI			T12	2	,			9	
	, GTR+I+G	MI	[]	BI		, 7			,	,

i

 6
 COI
 9

 Tab. 6
 Average genetic distances based on COI gene fragments of nine Sanguinolaria species

GTR-距离

	9	28S	rRNA		9					
	Tab. 9 Genetic av	erage distan	ces based on	28S rRNA g	ene fragm	ents of nine	Sangui	<i>nolaria</i> s	pecies	
	species	1	2 3	3 4	5	6	7	8	intraspecies genetic distance	
1	S. acuta								0.000	
2	S. chinensis	0.067							n/c	
3	S. diphos	0.015	0.064						0.000	
4	S. elongata	0.048	0.095 0.0	43					0.002	
5	S. minor	0.053	0.102 0.0	48 0.048	0 144				0.019	
0 7	S. olivacea	0.144	0.191 0.1	40 0.146	0.144	0.136			0.000	
8	S. tchangsii	0.065	0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	00 0.039 067 0.080	0.040	0.144	0.067		0.000	
9	S. virescens	0.018	0.067 0.0	0.037	0.046	0.136	0.009	0.064	0.000	
					~	トールネカマ	(), III			
	0.06 CO I	弟一和弟位	密码于位置		0.3	6 COI 3rd	COI 3rd codon position			
	△ 0.05 -			××	0.3	0	Ŀ Ŀ			
			/	×	0.5	* 				
	0.04 -		X	4 A A A A	0.24 -	X/		x X	×	
			× _ ń n2	1. Aaraan A	in y	\sim	7	hur New You ye		
		0.12		××××	×× ^ _ `		0.02	- 1/2	×	
		0.12	*				0.02		~	
	×转换 transition	0.06	<u>×/</u> ,	, ×	转换 transi	tion	0.01	- /×	<u> </u>	
			0					0	X X X X X X X X X X X X X X X X X X X	
	0.04 0.06 0.08	0.10 0.12	0	0.4 0.8	1.2	1.6 2.0	2.4		0 0.02	
	4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							5	**	
				1 st and 2 nd cod	on position	⇔≈≚⊸♠∞♠	A			
		0.020				0.175	5	= codoir p		
		0016			×/- ×	0.140			× × × × K	
		.010				0.140			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	(insiti	0.012				0.105	5 -			
).008 -				0.070) - 🐹			
	→ 茶		× ×		- <u></u>			*×13%545_1		
	▲ 颠换 transvertion 索	0.004		─────────────────────────────────────	换 transition	0.033				
	\ \ \ \\\\\\\\\\\\\\	0 0 00				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		25-0-25	0 0 375	
	0.100 0.023 0.730	0.00	3 0.010 0.	015 0.020	0.02.0		0- 0-1			
		0 18 -			×	0.09		DIL		
	× · · · · · · · · · · · · · · · · · · ·	0.10 1 <u>5</u> S rB	JΔ			0.05		r <u>RNA</u>		
	^	6»+				🊈 Tolik	7:57-	· · · · ·	× ×	
	0.060	, <u>s</u> - 7		0.12	_ 🗋 🛍 🎆 🚜	¥	I Alton I and			
		× /		0.00		×				
	0.045	*		0.09	-					
	0.030 -			0.06	- *;					
	0.015	∧ ×≨	传换 transition	0.03	_ /*	Δ <u>Δ</u>	×	转换 tran	sition	
	0.013	△ 真	顶换 transvertic	n 0.05	A A		Δ	颠换 trans	svertion	
	0 0.0325 0.0650	0.0975 0.130	0 0.1625 0.1	0∦ 1950 0	0.06	0.12 0.1	8 0.2	4 0.30	0.36	
				-			_	-		

1 COI 16S rRNA H3 28S rRNA

i

Fig. 1 Saturation analysis plot for the COI, 16S rRNA, H3 and 28S rRNA transition and transversion substitutions of genus Sanguinolaria

C 1

GTR-distance

Fig. 2 Phylogenetic trees of nine *Sanguinolaria* species based on data T12 Numbers on the trees represent the values of supporting values and posterior probability values.

, 16S rRNA ^[29] , 16S rRNA , COI

,

7,COI16SrRNACOI

4

16S rRNA ; 7 ,

[28] DNA , 16S rRNA COI , 8 COI

; , , , , , , *R* Holmquist^[27] 0.4, 4 *R* ,

, DNA ^[24] DNA , R (TS/TV) ^[25] Desalle ^[26] , ,

, *R*

,

3 9 COI 16S rRNA GC AT ,

,

{[+(+)]+[+(+)]+ } 3

:

5

,

AT

,

- [1] Xu F S, Zhang S P. An Illustrated Bivalvia Mollusca Fauna of China Seas[M]. Beijing: Science Press, 2008: 202-207. [M]. ſ • , 2008: 202-207.]
- Liu R Y. Checklist of Marine Biota of China Seas[M]. Bei-[2] jing: Science Press, 2008: 581-582. [[M]. : , 2008: 581-582.]
- [3] Yuan Y, Li Q, Yu H, et al. The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications[J]. PLoS ONE, 2012, 7(2): e32353.
- Chen L X, Chen S W, Mai Y S, et al. An introduction of [4] research on biology and proliferation of Psammobiidae in China[J]. South China Fisheries Science, 2005, 1(2): 73-76. Γ

,

[J]. , 2005, 1(2): 73-76.]

- Chen Z. Combined effects of temperature, salinity and pH on [5] the growth rate of Sanguinolaria diphos juveniles[J]. Journal of Fisheries Research, 2017, 39(4): 264-271. [. pН [J]. , 2017, 39(4): 264-271.]
- Wu J F, Chen S W, Chen L X, et al. Artificial breeding of [6] Chinese sanguine (Hiatula chinensis)[J]. South China Fisheries Science, 2009, 5(4): 22-25. [[J]. , 2009, 5(4): 22-25.]
- Wafar M V M. Biochemical composition of the lamelli-[7] branchs Meretrix casta (Chemnitz) and Sanguinolaria diphos (Gmelin)[J]. Indian Journal of Fisheries, 1974, 21(1): 289-292.
- [8] Coan E V. Recent eastern Pacific species of Sanguinolaria and Psammotella (Bivalvia: Psammobiidae)[J]. The Nautilus, 2002, 116(1): 1-12.
- [9] Lin Z H, Huang X T, Dong Y H, et al. Analysis of Meretrix clams from Guangxi based on fAFLP markers and ITS sequences[J]. Oceanologia et Limnologia Sinica, 2009, 40(1): 33-41. [(Meretrix) fAFLP ITS [J]. , 2009, 40(1): 33-41.]
- [10] Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8): 1767-1780.
- [11] Yu Z Z, Li Q, Kong L F, et al. Utility of DNA barcoding for Tellinoidea: a comparison of distance, coalescent and character-based methods on multiple genes[J]. Marine Biotechnology, 2015, 17(1): 55-65.
- [12] Feng Y W. DNA Barcoding and molecular phylogeny of the Pteriina and Arcoida[D]. Qingdao: Ocean University of China, 2012. [DNA [D]. , 2012.] :
- [13] Taylor J D, Williams S T, Glover E A, et al. A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes[J]. Zoologica Scripta, 2007, 36(6): 587-606.
- [14] Chen J, Li Q, Kong L, et al. Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China[J]. Zoologica Script, 2011, 40(3): 260-271.
- [15] Giribet G, Edgecombe G D, Wheeler W C. Arthropod phylogeny based on eight molecular loci and morphology[J]. Nature, 2001, 413(6852): 157-161.
- [16] Li Q, Park C, Kijima A. Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai[J]. Journal of Shellfish Research, 2002, 21(2): 811-815.

[17] Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994, 3(5): 294-299.

5

- [18] Palumbi S R. Nucleic acids II: the polymerase chain reaction[J]. Molecular Systematics, 1996: 205-247.
- [19] Hassouna N, Michot B, Bachellerie J P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes[J]. Nucleic Acids Research, 1984, 12(8): 3563-3583.
- [20] Colgan D J, McLauchlan A, Wilson G D F, et al. Molecular phylogenetics of the Arthropoda: relationships based on histone H3 and U2 snRNA DNA sequences[J]. Australian Journal of Zoology, 1998, 46(5): 419-437.
- [21] Negrisolo E, Minelli A, Valle G. Extensive gene order rearrangement in the mitochondrial genome of the centipede *Scutigera coleoptrata*[J]. Journal of Molecular Evolution, 2004, 58(4): 413-423.
- [22] Johnson S B, Vrijenhoek R C, Rouse G W. A remarkable diversity of bone-eating worms (*Osedax*; Siboglinidae; Annelida)[J]. BMC Biology, 2009, 7(1): 74.
- [23] Fernández M V, Heras S, Maltagliati F, et al. Genetic structure in the blue and red shrimp *Aristeus antennatus* and the role played by hydrographical and oceanographical barriers[J]. Marine Ecology Progress, 2011, 421: 163-171.
- [24] Zhang A J, You Z J. Molecular phylogenetic relationships of some species of *Nassarius* (Gastropoda, Prosobranchia, Neogasrtopoda, Nassariidae) based on 16S rDNA fragment sequence[J]. Zoological Systematics, 2008, 33(3): 549-552.
 [, . 16S rDNA

[J]. , 2008, 33(3): 549-552.]

[25] Wang Q, Wang X H. Phylogenetic analysis on several genera of the subfamily Orthocladiin[J]. Journal of Inner Mongolia University (Natural Science Edition), 2017(3): 284-290.
[, . (:) 16S rDNA [J].

), 2017(3): 284-290.]

(

- [26] Desalle R, Freedman T, Prager E M, et al. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila[J]. Journal of Molecular Evolution, 1987, 26(1-2): 157-164.
- [27] Holmquist R. Transitions and transversions in evolutionary descent: An approach to understanding[J]. Journal of Molecular Evolution, 1983, 19(2): 134-144.

- [28] Li Y, Sun D R, Li W T, et al. Phylogenetic relationship in five *Zosteraceae* species based on matK, rbcL and ITS partial sequences[J]. Journal of Fisheries of China, 2011, 35(2): 183-191. [, , , , matK rbcL ITS 5 [J]. , 2011, 35(2): 183-191.]
- [29] Pan H T, Yuan Y, Wu Q, et al. Molecular phylogeny of *Tapetinae* (Mollusca, Bivalvia) based on mtDNA sequence[J]. Oceanologia et Limnologia Sinica, 2008, 39(3): 284-290. [, , , , . (Tapetinae) DNA [J]. , 2008, 39(3): 284-290.]
- [30] Li Q, Ji L, Xie S L. Phylogenetic analysis of *Batrachospemales* (Florideophyceae, Rhodophyta) based on chloroplast Rbcl sequences[J]. Acta Hydrobiologica Sinica, 2010, 34(1): 20-28. [, , 2010, 34(1): 20-28.]
- [31] Zhang X M, Lin Y, Bin S Y, et al. Phylogeny of Macrobrachium species using mitochondrial, 16S Ribosomal DNA[J]. Journal of Guangxi Normal University (Natural Science Edition), 2017, 35(3): 133-140. [, , , 16S rDNA
 [J]. (,), 2017, 35(3):

[J]. (), 2017, 35(5) 133-140.]

[D].

[32] Xiao J G. The complete mitochondrial genomes and phylogenetic analysis of *Sillago* species[D]. Qingdao: Ocean University of China, 2015. [.

2015.]

- [33] Rokas A, Williams B L, King N, et al. Genome-scale approaches to resolving incongruence in molecular phylogenies[J]. Nature, 2003, 425(6960): 798-804.
- [34] Wolf Y I, Rogozin I B, Grishin N V, et al. Genome trees constructed using five different approaches suggest new major bacterial clades[J]. BMC Evolutionary Biology, 2001, 1(1): 1-22.
- [35] Grandjean F, Tan M H, Gan H M, et al. Rapid recovery of nuclear and mitochondrial genes by genome skimming from Northern Hemisphere freshwater crayfish[J]. Zoologica Scripta, 2017, 46(6): 718-728.
- [36] Hickerson M J, Meyer C P, Moritz C. DNA barcoding will often fail to discover new animal species over broad parameter space[J]. Systematic Biology, 2006, 55(5): 729-739.

Phylogenetic relationships among *Sanguinolaria* species in the coastal waters of China

JIANG Lisha, LI Qi, KONG Lingfeng

Key Laboratory of Mariculture, Ministry of Education; Ocean University of China, Qingdao 266003, China

Abstract: Fragments of the mitochondrial gene (COI and 16S rRNA) and the nuclear marker (H3 and 28S rRNA) regions are suitable for phylogenetic relationship analysis. The phylogenetic relationships among nine Sanguinolaria species (Sanguinolaria acuta, S. chinensis, S. diphos, S. ovalis, S. virescens, S. elongata, S. minor, S. olivacea, and S. tchangsii) collected from the coastal areas of China was analyzed through the sequencing of COI, H3, 16S rRNA, and 28S rRNA genes. The two mitochondrial genes, COI and 16S rRNA, had an obvious AT-skewness, and their GC content were 41.17% and 41.01%, respectively, showing a certain degree of base preference. The overall transition/transversion bias of the four fragments (COI 5.073, 16S rRNA 3.042, H3 1.564, and 28S rRNA 1.480) were much higher than the critical value (0.4), which could offer effective phylogenetic information. As the genetic diversity parameters of all four markers in nine Sanguinolaria species had higher values (Pi<0.05, Hd<0.5) than most bivalve species, it is suggested that the Sanguinolaria species may have long history in the localities, and sufficient phylogenetic information. Among the nine Sanguinolaria species, the genetic average distances based on the COI gene were 0.087-0.331, and the genetic distances within species were 0–0.016. The minimum genetic distance was between S. ovalis and S. chinensis, which was much higher than the average value (0.005) between most species of bivalves. The saturation of the nucleotide substitution process in the four markers was calculated as well. The third codon positions of the COI gene's transition and transversion substitutions reached the point of saturation, which means that the third codon positions of the COI gene could not provide effective information. The combined data set T12, including the four molecular markers without the third codon positions of COI, totaled 1555 bp in length. Phylogenetic trees constructed by the Maximum Likelihood (ML) and Bayesian Inference (BI) methods were consistent, and cluster analysis based on the data set T12 showed three separate lineages, corresponding to three morphologically defined subgenera: Hainania, Nutallia, and Psammotaea. Combining morphological and molecular evidence, the results support that S. ovalis and S. chinensis has the closest phylogenetic relationship. The study sheds light on the genetic diversity and phylogenetic relationship of Sanguinolaria species occurring along the coast of China, which may be useful in genetic resource protection and sustainable use.

Key words: *Sanguinolaria*; COI; 16S rRNA; H3; 28S rRNA; phylogenetic relationship Corresponding author: LI Qi. E-mail: qili66@ouc.edu.cn