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A B S T R A C T   

Crossbreeding and polyploid breeding are two important tools for the genetic improvement of oysters, and their 
cross-application is expected to provide new benefits to oyster breeding. To evaluate the aquaculture traits of 
allotriploids between Crassostrea gigas and Crassostrea ariakensis, two triploid hybrids (TAG (diploid C. ariakensis 
♀ × tetraploid C. gigas ♂) and TGA (tetraploid C. gigas ♀ × diploid C. ariakensis ♂)) were established. Phenotypic 
traits including growth, survival and reproduction were analyzed in two diploid hybrids (AG (diploid 
C. ariakensis ♀ × diploid C. gigas ♂) and GA (diploid C. gigas ♂ × diploid C. ariakensis ♀)) as controls. The results 
showed that TAG presented triploid advantage in fertilization rates and hatching rates, up to 11.34% and 26.50% 
respectively, while TGA did not. The survival rate of TAG and the shell height of TGA exhibited triploid 
advantage throughout the larval stage and were significantly higher (P < 0.05) than those of AG and GA at day 
25. During the grow-out stage, triploid advantages appeared in the shell height of TAG and TGA, but only TAG 
showed triploid advantages in the survival rate. The triploid rates of TAG and TGA began to decrease during the 
grow-out stage, and reached 96.11% ± 4.41% and 90.56% ± 3.47%, respectively, at day 350. It was also found 
that the reproduction of TAG and TGA on day 350 was poor, manifesting as a high proportion of individuals with 
no gametes or a low number of gametes. Overall, TAG always presents triploid advantages in terms of growth and 
survival throughout the grow-out stage and shows potential value as a new resource of oyster farming or genetic 
improvement.   

1. Introduction 

Five Crassostrea oyster species (C. angulata, C. hongkongensis, C. gigas, 
C. ariakensis, C. sikamea) are naturally distributed along China’s long, 
broad coastline (Wang and Guo, 2008a; Zhang et al., 2012b; Zhang 
et al., 2016). Among these five oysters, C. gigas and C. ariakensis are the 
two most important species in northern China in terms of economic 
value and ecological value, respectively (Li et al., 2021). C. ariakensis 
naturally inhabits estuaries along the coastline, but its artificial breeding 
and cultivation have not been widely promoted due to its meat color 
(Qin et al., 2020; Wang et al., 2004). C. gigas is mainly distributed in the 
north of the Yangtze River; it is the most important aquaculture shellfish 
in northern China and is mainly farmed in Shandong and Liaoning 
provinces, which present the highest yield annually (Guo, 2009; Li et al., 
2011; Zhang et al., 2016). As an important oyster culture species around 

the world, C. gigas shows superior aquaculture traits such as fast growth, 
a high meat yield and excellent taste (Jiang et al., 2021; Zhang et al., 
2012b). Although C. ariakensis shows an advantage in terms of ecolog
ical value, it has long remained an undeveloped resource because of its 
lower aquaculture trait value, and genetic improvement is urgently 
needed. Interspecific hybridization is an effective way to transfer ideal 
characteristics and realize germplasm improvement (Bartley et al., 
2000; Hulata, 1995; Rahman et al., 2013), which can be applied to 
C. ariakensis and C. gigas to achieve genetic improvement of C. ariakensis. 
Previous studies have shown that symmetrical fertilization occurs be
tween these two species and that the hybrids can successfully hatch and 
survive; however, the aquaculture traits of the hybrids were not ideal, 
especially in hybrid from female C. ariakensis × male C. gigas (Allen and 
Gaffney, 1993; Li et al., 2021; Zhang et al., 2012a). Therefore, we 
attempted to carry out triploid breeding to improve the aquaculture 
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traits of the hybrids. 
Since the successful induction of polyploid oysters was initially re

ported in 1981 (Stanley et al., 1981), polyploid breeding of oysters has 
developed rapidly and created great economic value. Triploid oysters 
boast some advantages, such as rapid growth (Allen and Downing, 1986; 
Nell, 2002), strong disease resistance (Gagnaire et al., 2006; Hand et al., 
1988), no risks of genetic pollution (Guo et al., 1996; Piferrer et al., 
2009), and high nutritional value (Qin et al., 2018). Due to these eco
nomic advantages, triploid oysters are extremely popular in oyster 
farming and have been widely cultivated in some oyster farming coun
tries such as China, the United States, France and Australia (Peachey and 
Allen, 2016; Suquet et al., 2016). The best way to produce triploid 
oysters on a large scale is by hybridization between tetraploid and 
diploid oysters, which can achieve high, stable triploid rates (Guo et al., 
1996). The application of polyploid breeding in crossbreeding can pro
duce allotriploids, which can help improve the aquaculture traits of 
diploid hybrid offspring (Bartley et al., 2000; Zhang et al., 2014a). 

Among oysters, the establishment of allotriploids has been reported 
between C. gigas and C. hongkongensis (Zhang et al., 2014a) and between 
C. ariakensis and C. hongkongensis (Qin et al., 2020) via the methods of 
salinity or drug induction. Moreover, it is feasible to cross C. gigas tet
raploids with C. ariakensis diploids to obtain allotriploids (Que and 
Allen, 2002), but there are no available data on the phenotypic traits of 
the offspring. Hence, in this study, allotriploids were generated by 
crossing C. gigas tetraploids with C. ariakensis diploids, and the pheno
typic traits of the hybrids were analyzed to evaluate the production 
value of the aquaculture traits of the allotriploids generated from C. gigas 
tetraploids and C. ariakensis diploids. 

2. Materials and methods 

2.1. Oyster collection and artificial insemination 

Two-year-old tetraploid (shell height, 5.94 cm ± 0.78 cm) and 
diploid (shell height, 9.46 cm ± 1.83 cm) C. gigas were obtained from an 
artificial breeding po�㤳㠲‭㐳⸳ㄱ㠠呭ਜ਼⠰〃r ⥝⁔䨊ㄠ〠〰ऀ਀

6〃rtT䨊ㄠ〠〠ㄠㄱ⸶㈹㤠ⴳ〮ㄸ㠱⁔洊嬹⸷〳̀ᄀ̀ىᄀ‱′㑇Ѐ਀〠ㄠ㈵⸹㈰㈠ⴲ㌮㘲㈷⁔洊嬨ȩ崱〰㌀ᄀذ਀㘰㤠ⴴ㌮㌱ㄸ⁔洊嬨ࠃrt᠐ ⥝⁔䨊⽆ㄠㅔ䨊ㄠ〠〠ㄠ㤮㌳㤵‭㐴⸶㈷㠠呭ਜ਼㐲‭㐵⸹㌶㘠呭ਜ਼⠀̷〰〳㔲㄀ذ㔀g ⥝⁔䨊ㄠ〠ご䨊ㄠ〠〠ㄠ㠮㐴㍔䨊ㄠ〠〠ㄠ㐮㤵㜸‭㈲⸳ㄳ㤠呭ਜ਼⠸〰̷〰〳㔲㄀آ᠀਩崠告਱‰‰《

2㈃㜰〰㌵㈱t〰ऀ⁔䨊䕔ਯ印慮‼㰠〰㐀ఇ㠠ⴴ㌮㌱ㄸ⁔洊嬨縩崠吷〰〳㔲㄀ذ崠告਱‰‰‱‴⸸㔱ㄠⴲ㘮㈴㜴⁔洊嬨⠰Ŕ㜰〰㌵㈱t⽊਱‰‰《⥝⁔䨊ㄠ〃r-old 
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2.5. Measurement and analysis 

The fertilization rate of eggs, hatching rate of zygotes, shell height 
and survival rate of larvae were calculated according to the method 
described by Zhang et al. (2012). The ploidy analysis was carried out at 
24 h and on day 25, day 120, day 180, day 300 and day 350 after 
fertilization, and shell heights and survival rates were measured on day 
5, day 15, day 25, day 120, day 180, day 300 and day 350 after fertil
ization. The triploid rate is the ratio of the number of triploid individuals 
to the total number of samples, and the survival rate of spats or adults is 
the ratio of the number of individuals at corresponding ages to the initial 
number. Fifty individuals in the larval stage and thirty individuals in the 
grow-out stage were randomly collected from each replicate of each 
group to measure shell height. 

To evaluate the aquaculture traits of diploid hybrids, mid-parent 
heterosis (H) was used (Cruz and Ibarra, 1997; Xu et al., 2019a) and 
was calculated by using the following equation: 

H(%) = [XF1 − (XA +XG)/2 ] × 100/(XA +XG)/2 

where XF1 indicates the mean phenotypic value of the hybrids, and 
XA and XG indicate the mean phenotypic values of the C. ariakensis and 
C. gigas, respectively. 

To evaluate the aquaculture traits of triploid hybrids, the triploid 
advantage rate (Td) was used (Zhang et al., 2014a) and was calculated 
by using the following equations: 

TdAG (%) = (TAG − AG)× 100/AG  

TdGA (%) = (TGA − GA)× 100/GA 

where TdAG and TdGA refer to the triploid advantage rates, and TAG, 
TGA, AG and GA indicate the phenotypic value. 

All data analysis was performed by using SPSS19.0. The differences 
in each indicator among different experimental groups were analyzed by 
one-way ANOVA, and Tukey multiple comparisons were conducted, 
with the significance level set at 0.05. 

3. Results 

3.1. Fertilization, hatching and larvae development 

The two intraspecific combinations showed significantly higher 
fertilization rates among all 6 groups (P < 0.05), with AA and GG 
showing rates of 77.35% and 79.84%, respectively. There were no sig
nificant differences in the fertilization rates between TAG and AG, or 
between TGA and GA (P > 0.05), and the fertilization rates of TAG and 
TGA were only 18.39% ± 4.67% and 5.13% ± 1.64%, respectively. The 
hatching rate of TGA was only 30.64% ± 2.86%, which was significantly 
lower than those of the other groups (P < 0.05) (Table 2). 

The survival rate of TAG was significantly higher than that of AG 

during the larval stage (P < 0.05), with triploid advantage rates of 
21.48% at day 5, 49.47% at day 15 and 144.79% at day 25. The survival 
rate of TGA was only 6.11% ± 3.44% at day 25 and was always signif
icantly lower than that of GA (P < 0.05). The shell height of TGA was 
significantly higher than that of GA and AG at day 5 and day 25 (P <
0.05), with triploid advantage rates of 5.52% and 4.13%, respectively, 
while the shell height of TAG was always the lowest among the 6 groups 
(Table 2). 

3.2. Genetic confirmation and ploidy analysis 

The flow cytometry results showed that the relative DNA content of 
diploid C. gigas was basically the same as that of C. ariakensis. In C. gigas, 
the relative DNA content of tetraploids was twice that of diploids. The 
relative DNA content of the triploid crosses (TAG and TGA) was 1.5 
times that of the diploid crosses (Fig. 1). C. ariakensis (parents and 
progeny) and C. gigas (parents and progeny) showed clear specific bands 
at 500–600 bp and 600–700 bp, respectively. There were two specific 
bands observed in both diploid (GA and AG) and triploid (TAG and TGA) 
crosses (Fig. 2). 

3.3. Growth, survival and wet weight of spat 

Shell height was not statistically different between the TAG and AG 
crosses (P > 0.05), but the Td (triploid advantage rate) values of TAG 
were always positive throughout the grow-out stage. The shell height of 
TGA was only lower than that of GG and was significantly higher than 
that of GA at days 180–350 (P < 0.05), with triploid advantage rates of 
8.27% at day 120, 8.50% at day 180, 10.32% at day 300 and 6.16% at 
day 350. The heterosis values of diploid crosses (AG and GA) for shell 
height and the survival rate were always negative. A significantly 
greater wet weight (P < 0.05) was found in GG, reaching 30.96 g ± 3.65 
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triploid rate of TAG remained 100% before day 180, and began to 
decline between days180 and day 300, and declined to 96.11% ± 4.41% 
at day 350. Overall, the triploid rate of TAG was always higher than that 

of TGA after day 120 (Table 4). 

3.5. Analysis of reproduction 

The male ratio was generally higher than the female ratio in all 
experimental groups except for TAG at day 350. Hermaphrodites were 
found only in AG, TAG and TGA, with ratios up to 2.2%, 12.2% and 
14.4% respectively. A large number of agametic individuals appeared in 
two triploid hybrids, TAG and TGA, accounting for 55.6% and 39.0% of 
the oysters, respectively, while no similar phenomenon occurred in the 
two intraspecific crosses (AA and GG). GG and AA showed the highest 
numbers of eggs, up to (83.37 ± 8.31) × 105 eggs and (61.69 ± 6.32) ×
105 eggs, respectively, while the two triploid hybrids TAG and TGA, 
showed the significantly lowest number of eggs (P <0.05), only (0.46 ±
0.02) × 105 eggs and (0.58 ± 0.06) × 105 eggs respectively. The number 

Fig. 1. Ploidy analysis of Crassostrea ariakensis (A), C. gigas (G) and their intraspecific crosses (AA and GG), diploid crosses (AG and GA), and triploid crosses (TAG 
and TGA). 

Fig. 2. PCR results for the ITS2 gene of Crassostrea ariakensis, C. gigas and their 
intraspecific crosses (AA and GG), diploid crosses (AG and GA) and triploid 
crosses (TAG and TGA) (M, 100 bp marker; 1–2, C. gigas; 3–4, GG; 5–6, GA; 7–8, 
AG; 9–10, TAG; 11–12, TGA; 13–14, C. ariakensis; 15–16, AA). 

Table 3 
Survival rate, shell height and wet weight (n = 3 replicates, mean ± SD) of intraspecific crosses (AA and GG), diploid (AG and GA) and triploid crosses (TAG and TGA) 
between Crassostrea ariakensis and C. gigas, in addition to the heterosis (H) values and triploid advantage rates (TdAG and TdGA).  

Items Survival rate (%) Shell height (mm) Wet weight (g) 

Day 120 Day 180 Day 300 Day 350 Day 120 Day 180 Day 300 Day 350 Day 350 

AA 78.35 ± 4.87c 59.75 ± 6.61c 55.41 ± 4.97c 52.13 ± 5.16d 31.76 ± 5.44b 40.55 ± 4.60abc 51.42 ± 5.75ab 53.37 ± 4.55ab 23.01 ± 2.55ab 

GG 88.22 ± 4.64c 71.16 ± 5.02c 64.28 ± 3.32c 51.69 ± 8.85d 33.65 ± 2.90b 47.73 ± 1.05c 58.94 ± 2.97b 62.43 ± 9.46d 30.96 ± 3.65d 

AG 43.70 ± 11.76b 30.00 ± 9.30ab 24.04 ± 9.73ab 17.98 ± 6.14ab 23.23 ± 1.48a 31.90 ± 5.25a 44.18 ± 6.70a 50.33 ± 6.82a 21.61 ± 2.33a 

GA 52.73 ± 10.19b 39.82 ± 5.45b 28.55 ± 3.74b 24.85 ± 2.88bc 30.10 ± 1.45b 42.33 ± 5.91bc 51.51 ± 2.58ab 55.73 ± 7.01bc 25.92 ± 4.84bc 

TAG 53.25 ± 6.50b 35.42 ± 7.92b 33.90 ± 7.33b 32.85 ± 7.58c 23.84 ± 6.06a 33.63 ± 4.85a 45.62 ± 3.55a 53.60 ± 7.43ab 22.77 ± 4.15ab 

TGA 24.15 ± 5.62a 21.11 ± 7.55a 13.52 ± 3.76a 8.61 ± 2.09a 32.59 ± 4.36b 45.93 ± 5.86c 56.82 ± 4.03b 59.17 ± 8.66cd 27.02 ± 5.26c 

H (%) − 42.11 − 46.67 − 56.06 − 58.75 − 18.46 − 15.91 − 13.29 − 8.41 − 11.94 
TdAG (%) 21.84 18.08 50.00 82.72 2.63 5.43 3.25 6.49 5.37 
TdGA (%) − 54.21 − 46.99 − 52.63 − 65.34 8.27 8.50 10.32 6.16 4.26 

Different superscripted letters in each column indicate significant differences (P < 0.05). Heterosis (H) refers to diploid hybrids compared to intraspecific crosses (AA 
or GG). The triploid advantage rate (Td) refers to triploid hybrids compared to diploid hybrids. 

Table 4 
Triploid rates (n = 3 replicates, mean ± SD) of triploid hybrids TAG and TGA.  

Crosses D-larvae 
(%) 

Day 25 
(%) 

Day 120 
(%) 

Day 180 
(%) 

Day 300 
(%) 

Day 350 
(%) 

TAG 100 100 100 100 98.33 ±
2.89 

96.11 ±
4.41 

TGA 100 100 97.08 ±
4.02 

95.83 ±
2.60 

92.08 ±
4.02 

90.56 ±
3.47  

H. Li et al.                                                                                                                                                                                                                                        



Aquaculture 548 (2022) 737675

5

of sperm in the intraspecific crosses (AA and GG) was highest, and sig
nificant so (P <0.05), followed by the diploid crosses (AG and GA), 
whereas that in the triploid crosses (TAG and TGA) was the lowest, and 
this difference was significant (P < 0.05) (Table 5). According to the 
appearance of the gonads, AG and GA showed a fatter edible part than 
TAG and TGA, but less fatter than AA and GG (Fig. 3). 

4. Discussion 

The shell height of the triploid hybrid TAG was lower than that of the 
diploid hybrid AG throughout the larval stage; similarly slow growth of 
triploid larvae has been found in triploid C. sikamea (Wu et al., 2019) 
and allotriploid between C. gigas and C. hongkongensis (Zhang et al., 
2014a). Wang et al. (2002) reported that the triploidization of diploid 
oysters leads to an increase in heterozygosity, thereby affecting their 
phenotype. The phenomenon of an increase in heterozygosity promoting 
growth mostly occurs after metamorphosis, while the increase in het
erozygosity in the larval stage may harm growth (Mallet et al., 1985; 
Zouros et al., 1983), which might explain the slow growth of the triploid 
hybrid larvae in this experiment. Although TGA grew faster than GA, its 
fertilization rate, hatching rate and larval survival rate were all lower, 
which may result from egg source problems (Guo et al., 1996; Matt and 
Allen, 2014). Previous studies have shown that C. gigas tetraploids 
exhibit a lower number of eggs and lower sperm quality than diploids 
(Guo and Allen, 1997; Suquet et al., 2010), meaning that tetraploids may 
show slightly lower fecundity than diploids. In our experiment, we 
found that the gonad development of the female tetraploid C. gigas was 
far inferior to that of diploid C. gigas and C. ariakensis. Poor gonad 
development, characterized by a low number of eggs and a high pro
portion of deformed eggs, may directly reduce the hatching rate and 
larval survival rate of progenies with tetraploid C. gigas as the female 
parent. In fact, as long as the survival rate is high in the larval stage, it is 
valuable for mass production. However, if the survival rate is so low that 
it failure to obtain a large number of eyespot larvae, the aquaculture 
value will be zero. The survival rate of TGA was only 6.11% ± 3.44% at 
day 25, and such a low larval survival rate means that it is extremely 
unlikely that TGA will become a new breed for commercial production. 

The bands obtained in the genetic identification of the ITS2 gene in 
C. ariakensis or C. gigas were consistent with previous studies (Yao et al., 
2015; Zhang et al., 2012a). The hybrids showed two specific bands, 
indicating that they were true heterozygotes. During the grow-out stage, 
the shell heights of TAG and TGA were always greater than those of AG 
and GA, respectively, showing the rapid growth of triploid juveniles, 
which was consistent with the results of most studies on triploid oysters 
(Zhang et al., 2017; Zhang et al., 2014a). However, although the triploid 
hybrids employed in this experiment grew faster than the related diploid 
hybrids, the growth advantage was not significant. We propose two 
hypotheses based on previous research to explain this phenomenon. 
First, the heterosis value of shell height in the diploid hybrids (AG and 
GA) was consistently significantly negative, indicating that the two 
hybrids showed growth inhibition relative to their parents, and the 
growth inhibition resulting from hybridization may hinder the presen
tation of the triploid growth advantage. Second, it may be related to its 

environmental adaptation. The phenotypic characteristics of triploid 
oysters are usually affected by environmental factors (Callam et al., 
2016; Melo et al., 2020; Qin et al., 2019). In addition, Zhang et al. 
(2012) reported that the hybrid derived from female C. gigas and male 
C. ariakensis showed obvious survival and growth advantages in larval 
and grow-out stages, which was different from our results. The differ
ences in environmental salinity between the two studies may be the 
main reason that the hybrids exhibit different phenotypic traits. 
Considering the difference in salinity adaptability between C. ariakensis 
and C. gigas (Li et al., 2021), their hybrids may show completely 
different aquaculture traits under environmental salinities. Therefore, 
the advantages of triploid hybrids under different farming circum
stances, especially in sea areas with different salinities, need to be 
further studied. 

The triploid hybrids showed extremely poor reproduction, which 
specifically manifested as a high proportion of agametic and hermaph
roditic individuals or a low number of gametes. This verified the ob
servations of completely sterile or slightly fertile triploid oysters in 
previous studies (Dheilly et al., 2014; Jouaux et al., 2010). Moreover, it 
is the poor fertility of the triploid that accounts for its inability to 
reproduce normally and maintain excellent meat quality year round, 
which would allow the gap in oyster production to be filled during the 
breeding season. In addition, we observed an interesting phenomenon of 
higher hermaphrodite ratios were higher in the triploid hybrids. Her
maphroditism is a manifestation of a sexual differentiation disorder and 
has been reported in previous studies on triploid fertility (Gong et al., 
2004; Jouaux et al., 2010). At the molecular level, the presence of an 
extra set of chromosomes blocks chromosome sex differentiation 
(Dheilly et al., 2014), resulting in a large number of hermaphroditic and 
agametic individuals. 

The survival rates of the diploid hybrids (AA and GG) were always 
significantly (P < 0.05) lower than those of the two parents, showing an 
obvious hybrid disadvantage between C. gigas and C. ariakensis, which 
has also been found in the hybridization of other oysters (Huo et al., 
2013; Xu et al., 2009; Xu et al., 2019b; Yao et al., 2015). Although F1 
hybrids show no growth and survival advantages, backcrossing with 
their parents will be of great valuable in further breeding because the 
offspring of backcrosses with parents often exhibit phenotypic traits 
completely �、‱⁔昊ㄠ〠〠ㄠ㌹⸸〴ㄠ㐱‵⸰㜱㘠ⴳ⸹㐰㘠呭ਜ਼⠆1y ⥝‰〰਀
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found that the two allotriploid groups showed varying degrees of de
creases in triploid rates, which reached 96.11% ± 4.11% (TAG) and 
90.56% ± 3.45% (TGA) at day 350. The reversion of ploidy caused by 
chromosome loss at the individual level is assumed to be the main reason 
for the decreases in triploid or tetraploid rates in a polyploid population. 
This phenomenon of chromosome loss usually occurs in triploid oysters 
(Zhang et al., 2010) and tetraploid oysters (Zhang et al., 2014b; Zhang 
et al., 2014c). Current studies indicate that chromosome reversion may 
be linked to a meiosis error, which means that the appearance of chro
mosome clumping during meiosis leads to a gradual reduction of the 
chromosome number (de Sousa et al., 2016; Zhang et al., 2010). How
ever, there are relatively few studies on the external influence and in
ternal mechanism of oyster chromosome loss, and the in-depth 
exploration of the molecular mechanism should be the main approach 
for fundamentally addressing polyploidy instability. In addition, female 
tetraploid oysters are more likely to produce aneuploid gametes than 
male tetraploids, thus increasing the proportion of aneuploid larvae in 
the triploids produced by female tetraploids (Guo and Allen, 1997). 
These aneuploid individuals are considered to be an unstable interme
diate process of chromosome loss that will eventually reverse to the 
stable state of diploids (Zhang et al., 2010), which seems to explain why 
the triploid rate of TGA was lower than that of TAG. Therefore, the 
generation of a triploid oyster population by crossing male tetraploids 
with female diploids can reduce the decrease in the triploid rate to some 
extent. 

In conclusion, we successfully produced diploid and triploid hybrids 
by hybridization between C. gigas and C. ariakensis and obtained growth, 
survival and reproductive data. The triploid hybrid TAG, obtained from 
a cross of 2n female C. ariakensis × 4n male C. gigas, showed advantages 
in growth and survival compared with the diploid hybrid AG, and it is 
expected to become a new cultured oyster resource in northern China; 
nevertheless, its advantages in terms of nutritional value, meat quality 
and salinity adaptation need to be further studied. Although the triploid 
hybrid TGA, obtained from the cross of 4n female C. gigas × 2n male 
C. ariakensis, showed a growth advantage, its lower survival rate re
mains bottleneck to its application in large-scale production. The results 
of apl〰〈 tetraploi6qㄶ漰〰Ѐ฀̀଀܈dupĠ㐮㐱〱‭㄰⸴㤸㤠呭〰ᰀ㌰T䨊ㄠ〠〠ㄠ㄰⸱㈹ㄠⴴ㔮㤳㘶⁔洊嬨�匸฀਩崠2n appli2㔳‷�灡渠㰼 䅣瑵慬呥┰㘘�䐱ㄸ⁔洑㤰‱‱㠮erq㜱㠰᐀Ѐ〰਀fv呭ਜ਼⠂⥝⁔䨊ㄠ〠〠ㄠ㈮『�‱′㈮㜴〶‭㌵⸴㌷㘠呭ਜ਼⠀☀─㈀ጀ਩崠告਱‰‰‱′㈴㤸㤂
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