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Short communication

The growth, survival and ploidy of diploid, triploid and tetraploid of the
Pacific oyster ( 1"1# § 4&'& 1) in larval and juvenile stages

Yongguo Li?, Qi Li*™"
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ARTICLE INFO ABSTRACT

($)D" 4lE Slow growth and genomic instability are the main problems facing tetraploid oyster breeding. In response to the
IS NEE above problem, we developed tetraploid by using ~ !!"1# $ #&'& !%Haida No.3’, a new variety with rapid growth

Tetra}p]‘;‘d and black shell color, and analyzed the growth, survival and ploidy of diploid ¢ x diploid ¢ (DD), diploid ¢? x

Zt;a‘t’; tetraploid ¢ (DT: triploid) and tetraploid ¢ x tetraploid ¢(TT) in different periods. The results showed that there

Genomic stabilit 0 was no significant difference between the fertilization rate of DD, DT and TT, but the hatching rate of TT was

significantly lower than that of DD (@%< 0.05). The shell height of TT was significantly lower than DD, and the
shell height of DT was significantly higher than that of DD at 13 days (@%< 0.05). The survival rate of TT was
lower than that of DD and DT in larval stage (@%< 0.05), while there was no significant difference in the mean
survival rate of DD, DT and TT in juvenile stage. The tetraploid rate in TT was 100% during the larval and
juvenile stages. The shell color of all progeny in TT and DT was black and consistent with Fi&'¢ !4Haida No.3’.
These results indicated that black shell color of F&'& !%‘Haida No.3” could be stably passed on to triploid and
tetraploid offspring, suggesting that establishing genomically stable tetraploid populations was feasible by
screening tetraploid parents.
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orted in 1981, and the triploid oyster
ly in the last two decades (Matt and
al., 1981). Triploid oysters play an
yields and economic benefits because
h performance (Buestel et al., 2009;

cpfmical induction, but the high mortality and no guarantee of 100%
riploid rates made it difficult to apply in commercial production
(Gérard et al., 1999; Guo et al., 1992; Quillet and Panelay, 1986; Scarpa
et al., 1994; Yang and Guo, 2006; Yamamoto and Sugawara, 1988). The
crossing of tetraploid and diploid can produce 100% triploid, which is
an ideal way for triploid to be applied in large-scale production (Guo and
Allen, 1994a; Guo et al., 1996). However, when oyster producers are
immersed in the acquisition of tetraploid oysters, thinking that they can
get the tetraploids once and for all, they do not realize that there might
be a problem with the tetraploid itself.

The growth rate of tetraploid oyster is
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transformation from triploid "1 $ %&'& lto mosaic type has also
been described by Zhang et al. (2010). This suggested that genomic
instability in oyster polyploids exists. Genomic or chromosomal insta-
bility could lead to aneuploidy and mosaic individuals, posing a serious
challenge to establishing stable tetraploid lines. The presence of aneu-
ploidy in the offspring of tetraploid x tetraploid might indicate that part
of tetraploid oysters suffers from reversion (Benabdelmouna and Ledu,
2015). Therefore, it is worth considering whether the stable tetraploid
lines can be established by selecting tetraploids whose chromosomes are
not reverted.

As a new variety of multi-generation selection, ‘Haida No.3’ variety
of Fg'& Mwith blackshell colglland rapid growth is an ideal material for
producing tetraploids (Xu e 2017; Xu et al., 2020), having the po-
jal to improve the tet jd growth performance. Through our
ly produced the tetraploids of F&'&
or. However, the inheritance of pro-
g is not clear. In order to assess the
loid, triploid and tetraploid ploidy of

ally derived from the black-
population in 2010. After
t and shell color fixation,
growth and black shell color

iploids of ‘Haida No.3’ variety of Fi&'& I.

In May 2021, the one-year-old diploid and tetraploid parents used in
this study were transferred to oyster hatchery in Laizhou (Shandong
Province, China) three weeks before the experiment started. During the
temporary rearing period, all broodstock were conditioned at the tem-
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perature of 24 4 1 °C and salinity of 30 & 1 psu and fe LI ol
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. 1. Survival rate and shell height of diploid x diploid (DD), diploid x
tetraploid (DT) and tetraploid x tetraploid (TT) crosses of U S 68’8 1h
during the larval stage. Different lowercase letters indicate significant differ-
ences (@%< 0.05).

between DD and DT groups (@4 > 0.05). From day 13, the mean shell
height of DT (247.29 + 31.18 pm) was significantly higher than that of
DD (213.53 + 27.22 ym) and TT (175.36 + 25.42 pm), and that of DD
was significantly higher than that of TT (@%< 0.05). From 50 days to 120
days, the mean shell height of crosses DD, DT and TT increased by 28.26
mm, 31.73 mm and 17.16 mm, respectively (Table 2). The mean shell
height of DT cross was significantly higher than that of DD and TT
crosses (@%< 0.05), and the mean shell height of DD cross was signifi-
cantly higher than that of TT cross (@%< 0.05).

During the larval stage, the survival rates of DD, DT and TT crosses at
day 19 dropped to 27.73%, 16.74% and 10.41%, respectively (Fig. 1).
The survival rate of DD cross was higher than that of DT and TT crosses
throughout the larval period. At day 7, the survival rate of DT and TT
occurred a sharp decrease and the survival rate of TT cross was higher
than that of DT (@%< 0.05), while the survival rate of DT was higher than
that of TT at day 19 (@< 0.05). In contrast to the low survival rate of
larval stage, DD (88.65%), DT (87.74%) and TT (87.84%) had a high
survival rate between 50 and 120 days (Table 2).

Shell height and survival rate of diploid x diploid (DD), diploid x tetraploid
(DT) and tetraploid x tetraploid (TT) crosses of F&'& !ton days 50 and 120.
Different superscript letters in each column indicate significant difference (@4<
0.05).

Cross Shell height (mm) Survival rate (%)
50 d 120 d 120 d

DD 4.47 +0.89° 32.73 £3.17°" 88.65 + 3.72 2

DT 5.83 +1.39 2 37.56 + 2.08 2 87.74 + 2.46 2

TT 3.62 + 0.47 ¢ 20.78 £ 5.14 ¢ 87.84 +£3.50 2
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s, respectively (Fig. 2). Triploid and tetraploid
shell color, being the same as diploid F&'& 4

d larvae in DT and TT crosses was the
ing rate, while there were almost no
ggesting that the abnormal larvae in DT

ormed larvae in the TT cross might be the offspring of the first-
eneration of tetraploid and tetraploid hybrids, which have not yet
adapted to the doubling of the chromosome (Comai, 2005). Low
hatching rates of tetraploids have also been reported in previous studies
(Guo et al., 1996; Zhang et al., 2022). The development of tetraploids
based on selective breeding strains might be beneficial to the survival of
their offspring, but the adverse effects of chromosome doubling still
played an important role in the hatchability of offspring, such as more
complex pairing and segregation interactions leading to mitotic abnor-
malities (Comai, 2005).
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Considering that almost all larvae in DD cross are D-shaped larvae
when DT cross is still largely composed of trochophore larvae, the most
likely reason for the difference in the size of newly hatched D-shaped
larvae between the DT and DD crosses was that the triploid oyster cells
were larger than the diploid ones, or more precisely, it’s caused by an
increase in cell size without a decrease in cell number (Guo and Allen,
1994b). In oysters, triploid growth usually exceeds diploid growth after
a year, when diploids begin to allocate large amounts of energy re-
sources to reproduction (Stanley et al., 1984; Allen and Downing, 1986).
In this study, the mean shell height of triploid oysters was always higher
than that of diploid oysters from day 13. This might be related to the
increased heterozygosity of the triploid gene (Wang et al., 2002). More
importantly, triploids might inherit superior growth performance from
their parents (Leeds and Weber, 2019). Tetraploid oysters could inherit
the excellent production performance of their parents. For example,
tetraploid oysters could inherit disease resistance (Guo et al., 2002). In
this study, tetraploid offspring still remained black shell color, indi-
cating that black shell color could be inherited. Rapid growth and black
shell color are traits specific to ‘Haida No.3” of F#&'& !, which mean that
rapid growth may also be inherited, just like black shell color.

Generally, survival or vigor of neopolyploids was low in synthetic
populations (Gaeta et al., 2007; Matsushita et al., 2012). It has also been
reported that the survival rate of tetraploid aquatic animals was lower
than that of diploid animals (Cassani et al., 1990; Horstgen-Schwark,
1993; Zhou et al., 2010). In this study, the survival rate of tetraploid
larvae was found to be higher than that of previous study (Guo et al.,
1996). This might mean that selective breeding strain for the develop-
ment of tetraploids is beneficial to improve the survival performance of
tetraploids. In the present study, the differences of survival rate between
DD and TT groups in larval and juvenile stages suggested that tetraploids
adapted to chromosome changes could survive like diploids.

OF=F @0"'4)% 24%18$00."0" %

If chromosome loss of tetraploid oysters was real, and not due to the
testing method, then tetraploid oyster genome instability could be
divided into the following two situations. Firstly, tetraploid oyster
genome instability is general, but the timing of chromosomal loss is
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. Flow cytometry graphs of offspring in diploid x diploid (DD), diploid x tetraploid (DT) and tetraploid x tetraploid (TT) crosses of F&'& !%at day 120. A, DD
offspring; B, DT offspring; C, TT offspring.

. The offspring of diploid x diploid (DD), di oid (TT) crosses of Fi&'& !%at day 160.
different in different tetraploids. In this case, the tetrd
genome is relatively stable until the chromosomes start
Secondly, the genome instability of tetraploid oyster is not
part of the tetraploid oyster genome is always stable.
genomically stable tetraploids exist. Therefore, selecting
with stable genomes to establish a tetraploid populatiof
important for improving tetraploid performance. In this
tetraploid rate in the TT cross was always 100%, proving
lishing genome-stable tetraploid population by screening|
parents was feasible to some extent. The secretion and
black pigmentation are controlled by two independent
2019). And black pigmentation is identified as the ford b tetraploid parents. This study provides mean-
while gold and white are the background colors (Ge et al he development of tetraploids with important
shell color of the offspring of ‘Haida no. 3’ of Fi&'& s nd
but there is a possibility that ploidy changes may affect the
genes related to the shell color of the offspring. In this stud
DT cross and tetraploids in TT cross still retained the sa
color as Fi&'& 1¥Haida No.3’, suggesting that the ploidy c
affect the trait of black shell color. This proves that t

bred diploid strain with important economic

thvater industry.
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. The significant differences in survival
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